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Chapter 1

Introduction and Summary

A sensitive superconducting six-axis accelerometer (SSA) has been developed
for application in gravity survey and inertial guidance. A breadboard SSA has been
constructed and operated to verify the design concepts of the device. The construction
of the breadboard SSA followed closely the original design proposed by Paik [4,11]. Based
on the experience obtained with the breadboard, an improved mode] of the SSA has been
designed and is under construction.

The design involves a single levitated superconducting proof mass of a special
geometry whose motion is monitored in six degrees of freedom. The proof mass has the
shape of an inverted cube, three orthogonal square plates bisecting each other, and is
made of niobium (Nb). It is levitated on magnetic fields produced by persistent currents
in 24 superconducting levitation/feedback coils. Itc motion in three linear and three
angular degrees of freedom is sensed by 24 superconducting sensing coils, which form six
independent inductance bridges. The six bridges are driven at six different frequencies
and are detected by a single SQUID, whose output is demodulated to recover the six
acceleration signals. The persistent currents in the levitation/feedback coils are adjusted
to null the six inductance bridges and the SQUID demodulated signals are fed back to
the corresponding levitation/feedback coils to keep the proof mass at the null position.

The coil forms have been machined out of a titanium alloy, TiV4Al6, and all
the coils were wound initially with niobium wire. Niobium was chosen because of its
high value of I ; so that the coils can be operated in the Type-I region where currents
are more stable. All the parts fit inside a 10.16 cm titanium cube.

Two problems were encountered with this design. First, the titanium alloy




used for the coil forms had an unusually low superconducting transition temperature,

4.5 K. 3ince the magnetic fields should be able to return through the coil forms, we had

to operate the SSA at an elevated temperature near 5 K to keep the coil foris from .
becoming superconducting. In the .ew model of the SSA, a different alloy of titanium is

used whose transition temperature is below 1.5 K. Another problem that has plagued the v
progress of our research is the briitleness of the thin niobium wires at low temperature«,

After a long battle to overcome the problem of wire breaking upon thermal cycling. we

resorted to a compromise solution of winding the coils with niobium-titanium (Nb-Tii

wire. Although mechanically strong, the Nb-Ti wire has to be operated in a Type-1]

region, thereby increasing the drifts in the superconducting circuits. In the improved

model, we have gone back to Nb wire to eliminate this problem.

The breadboard SSA has been operated completely. lLevitation and balance
have been achieved in all six degrees of freedom. The output of a single SQUID has been
successfully demodulated to recover the six acceleration signals. The external rf noise,
which had been a main concern for operating the bridge s~using circuits at the input of
a SQUID, has been filtered sufficiently by means of rf shielded transformers.

In addition to constructing an improved model of SSA. further tests will be
carried out on the breadboard SSA under a new Air Force contract. In particular.
the effect of oscillator noise and the source of any excess low frequency noise must he
investigated. The feedback circuits need to be developed to improve the dynamic range
of the device.

The theoretical sensitivity of the SSA is 107'2g Hz71/? for the linear and
1075 arcsec sec™2 Hz~ Y2 for the angular acceleration. The SSA of the new design will
be integrated with the three-axis superconducting gravity gradiometer (SGG) being de-
veloped under a NASA ccztract It is envisioned that the combined SGG/SSA package
will be flown in the Earth orbit for a gravity mapping mission in the late 1990’s. The
superconducting gravity gradiometer/accelerometer system with such high censitiviry,
if successfully developed, will find many important applications in gravity survey and

inertial guidance.




Chapter 2

Theory of a Superconducting

Six-Axis Accelerometer

2.1 Introduction

A Usixeaxis” acceleronieter measures the linear and angnlar acceleration in all
six degrees of freedom at the same point in space time. A superconducting six-axis
accelerometer operates at liquid helium temperatures and is able to take advantage of
the low thermal noise and the extremely high stability of materials and currents, which
is a direct consequence of cryogenic temperatures. The six-axis accelerometer uses the
properties of quantized magnetic flux to magnetically levitate a single cuperconducting
proof «ass with extreme stability. Additional superconducting circuits monitor and
control the position of the proof mass. High sensitivity is achieved through the use of a
SQUID (Superconducting QUantum Interference Device) to amplify the displacements

of the proof mass away from equilibrium.

Like the accelerometers in the gravity gradiometer, the superconducting proof
mass in the six-axis accelerometer (SSA) is free to respond to accoleraticn. However, the
proof mass in this case is free to respond to accelerations in all six degrees of freedom. In
the acceleroneters in the gravity gradiometer, the proof mass position is confined by a
mechanical spring and the accelerometer responds to acceleration in inverse proportion
to the stiffness of this mechanical spring. In the six axis accelerometer, the proof mase

is surrounded by quantized magnetic flux which confines the motion. Each degree of




freedom responds to acceleration in inverse proportion to the stiffuess of a “magnetic
spring”.

These “magnetic springs™ are generated by the superconducting coils placed
in close proximity to the proof mass. The niobium proof mass excludes the maguene
flux from these coils due to the Meissner effect and any motion of the proof wass farei
flux to redistribute itself within the superconducting circuitry. This transfer of eneren
produces a restoring force which opposes this change and creates the electrical equivalons
to 1 mechanical spring.

Each degree of freedom in the SSA s confined and controlled by an independent
superconducting circuit made up of four levitation coils. The <tiffness in each degree of
freedom is controlled by these circuits. The three circuits which conteal the finear degrees
of freedom, provide the levitation foree necessary to suspend the proof mass against the
pull of gravity. The three remaining circuits provide {eedback controb for the angiilar
degrees of freedom. In all. twenty-fonr levitation inductances surronnd the proof mass.

An additional twenty-four sensing inductances surround the proof mass. and
are used to detect the motion of the proof mass. When acceleration is applied to the
SSAL the proof mass is displaced 1 inverse proportion to the stitfuess of the “maguetic”
springs which surround the proof mass. Detection of this displacement is possible stuce
the Meissner effect forces the inductance of the sensing coils to change in proportion
to the displacement of the proof mass. Each degree of freedom is monitored by four
sensing coils connected together to form a superconducting hridge circuit, The sensing
cotls which make up each bridge circuit are properly selected o that the output of each
bridge is dependent on anly one degree of freedom. The outputs of all the bridge circuits
are connected in series to a SQUID amplifier. which converts tus signal to an ontpat
voltage. Fach hridge is driven by anindependent oscillating current, and a misbalanee of
any one of the bridge circuits will appear at the output of the SQUID amplifier. Recovery
of the original displacement of the proof mass in each degree of frecdom s accomplished
through the use of six lock-in amplifiers, each independently tuned to the correct carrier
frequency,

A simplified version of tnis detection technigque 5 shown n Fig. 201, for an
accelerometer with one degree of freedom. As the proof mass s displaced from equilib-

rivm in the positive r direction, the senang inductances ©; and [ decrease and the

sensing inductances Lypoand L yinerease. This change in sensing inductance anbalances

[R—
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Figure 2.1. A schematic illustrating the principle of a superconducting
bridge acceleration transducer.

the bridge circuit and an oscillating current proportional in amplitude to the misbalance
appears across the output coil. This current is then amplified and converted to an out-
put voltage through the use of a SQUID amplifier. Demodulation through the use of a

lock-in amplifier then recovers the original misbalance signal.

In this section, we have presented a very brief description of the operation of
the SSA. In the rest of this chapter, we will expand upon this deseription. We will first
present a general description of the dynamical equations of the accelerometer. This will
be followed by a description and analysis of the levitaticn and sensing circuitry. We will
then combine this analysis and derive the transfer functions for the SSA which refate
the external acceleration of the housing to the output. In the final section, we discuss
the potential sensitivity of the SSA. Throuchout this chapter. unless otherwise stated.
we will employ sunimation notation, where any two like indices will denote a sum over

each of the three axes, r, y, and :.




2.2 Dynamics of a Superconducting Six-Axis

Accelerometer

An accelerometer must measure the acceleration of itself relative to an inertial
reference frame. In a six-axis accelerometer, it is necessary to simultaneously measure
the three linear and the three angular accelerations applied to the accelerometer. In
actuality, the position and orientation of the proof mass is measured relative to th.
accelerometer housing, and the acceleration of the proof mass housing is inferred from
the dynamics of the proof mass. Thus, it is necessary to clearly understand how the
dynamics of the accelerometer can be used to derive the applied acceleration from a
knowledge of the position and orientation of the proof mass.

In an accelerometer with only one degree of freedom, the equation of motion
that relates the acceleration of the accelerometer housing to the position of the proof
mass is relatively simple. In the SSA, it is necessary to contend with both the linear and
angular degrees of freedom. This additional angular freedom complicates the description
greatly and we will first consider the dynamics of a single-axis accelerometer.

We will then derive the dynamical equations for a rigid body in rotating. ac-
celerated reference frame, i.e., the dynamical equations of the proof mass relative to the
accelerometer housing which is rotating and accelerated. These dynamical equations
will consist of three linear equations of motion and three Euler equations. The three
linear equations will directly relate the measurement of the position of the proof mass
to the acceleration of the accelerometer housing. The three angular equations will be
more complicated. Euler’s equations provide a description of the angular acceleration of
a body. It will be necessary to parametrize the orientation of the proof mass in terms
of a particular set of angles, and combine the kinematic equations with the dyvnamical
equations to derive a set of angular equations of motion that relate the orientation of

the proof mass to the angular accelerations of the proof mass housing.
p

2.2.1 Dynamics of a Single-Axis Accelerometer in a Rotating, Accel-

erated Reference Frame

In this section, we will be concerned with two reference frames: the reference

frame attached to the accelerometer housing from which the proof mass position is

)
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Figure 2.2. The single-axis accelerometer proof mass coordinate frame.

measured, and an inertial reference frame in which the accelerometer housing is rotating
and accelerating. In order to derive Lagrange’s equations, we will work in coinponent
notation. This is not as elegant as working in vector notation, but it is powerful. After
we have derived Lagrange’s equations, we can return to the elegance of vector notation.

The proof mass of a single-axis accelerometer is shown schematically in Fig.
2.2. The unprimed coordinates are taken as fixed to the accelerometer housing, and *he
primed coordinates are fixed to an inertial reference frame. The coordinates of the cen . r

of mass of the proof mass in the inertial reference frame are defined by
= Rf,{rf + r,-”, (2.1)

where RY is the rotation matrix describing the orientation of the accelerometer housing

H is the position of the accelerometer

with respect to the inertial reference frame, r
housing in the inertial reference frame, and 7 is the position of the proof mass body
relative to the accelerometer housing.

In order to formulate the dynamics of the accelerometer, we must compute the
velocity of the proof mass in the inertial reference frame. This is a function of RY.

8] . . . .
rH_and r”. Ounce we know this velocity, we can write down the Lagrangian for the




accelerometer and solve for the equations of motion. Differentiating Eq. (2.1) with
respect to time gives the components of the velocity of the center of mass in the inertial
reference frame,

v = R 1D+ R,krk + 1 (2.2)

This can be written in the standard way by grouping terms so that all constituent

components can be viewed in the inertial reference frame. We have
R R RJ +erk +T‘ (23)

The second term in this equation is the velocity of the proof mass relative to the housing
as viewed in the inertial reference frame, and the third term is just the velocity of the
housing. The first term is the product of two terms: the first, f?,’iRﬁ—], is related to the
angular velocity of the housing, and the second, R rl , is just the position of the proof
mass relatxve to the housing as seen in the inertial reference frame. From Fq. (2.3) we sce
that R R maps the position of the proof mass in the rotating frame into its velocity
as seen from the inertial reference frame. Furthermore, Rfllfﬁ-l is antisymmetric and
related to the components of angular velocity, w. In the inertial reference frame. the

components of w satisfy the equation 5]:
RIRE™ = Ve (2.4)
This is the usual w. Substituting Eq. (2.4) into Eq. (2.3). we have
vl = W (UkR“T[ Rtkrk + r (2.5)
We may now rewrite this in vector notation:
v =wxrl +oF + o, (2.6)

where v* is the velocity of the proof mass relative to the housing, and v/ is the velocity
of the housing. We have derived this standard result from a component formalism. This
is the same technique we will use to derive Lagrange’s equations of motion.

The Lagrangian for the dynamics of an accelerometer in a rotating, accelerated
reference frame is

1 >
L = §mv' v - V(r’ ) — mép(z).

ro
-1
~—




where V(rF) is the potential energy internal to the accelerometer, and ®g(z’) is the
gravitational potential energy. The internal potential energy, V, includes the energy of
the mechanical spring and the electromagnetic energy of the superconducting circuitry.

The generalized linear momentum from this Lagrangian, as measured with re-

spect to the accelerometer housing, is

ar ov'
i . . .
Pk = _—Br'P =m por v} = mRY (Rﬁr,’) + R+ TJH) . (2.8)
k k

; oL
k = —
orf
v} ) ddp(z') Oz! ov (¥
= m —- 'l)j -m —
orf oz, orf orf
S dde(z’)  av(rP)
= mil (Rl + RYE + i) - mRY - —. (29
dz! ory.

The time derivative of the generalized linear momentum can now be computed:

d d oL pH (pH P H.P , :H
@k T a 9+ = mRj (ij + Ry +Tj)
k
+mRl (Rrf +2klfil + RIFD +47) . (210

Lagrange’s equation sets the generalized force equal to the time rate of change of the

generalized momentum:

) . o 8%p(z’) 1 oV(rh)
Il + 2R00 + BT 4 7) = —RL ——— = 0 —
; k

(2.11)

Using the fact that R" is orthogonal, RJ’i = Rfj“], and rearranging terms gives

P 0 r
p 1OV ‘
L — =af, (2.12)
L
where a® is the external acceleration applied to the accelerometer:

‘ _ e ddp(r")
af = - Rl ('r'j’ +2r)i+l + R + — ] (2.13)
I

J
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The external acceleration applied to the accelerometer, a€, can be written:
0P (z')
-1 { . -1 . -1
af = - R (rJ” + | 2RI RYFP - RET RSP (2.14)
z .
J

This can be written more clearly in terms of the angular velocity of the housing, w. We
have already seen the components of w in the incrtiz! reference frame, Eq. (2.4). The

components of w, as viewed from the rotating housing, are defined as
wi = RE7 W, (2.15)
In analogy to Eq. (2.4), we find that
Rfj—lRﬁ = Wj€k;). (2.16)

RHT'RH can similarly be replaced. By differentiating Eq. (2.16) with respect to time
and applying Eq. (2.16) to the result, we find

-1 = . -
RETRY = wiwjhmemi + wickir. (2.17)
Substituting Eqgs. (2.16) and (2.17) into Eq. (2.14), we find
- 09g(z")
akE = —Rﬁ- ' 'FJH + — | - Qujr"lpckjl - ckjmch,nuw,-rf’ - ckjmcb,-rlp. (2.18)
oz
If we rewrite this in vectorial notation, the result is clear:

aEz—i""—V<I>E—2wX1"P—wx(wer)—u')xrp. (2.19)

The first term of the right hand side is the acceleration of the housing, the second term
is the gravitational acceleration, the third term is the Coriolis acceleration, the fourth
term is the centrifugal acceleration, and the fifth and final term couples the angular
acceleration to the linear acceleration in proportion to the displacement of the proof

mass away from the center of the accelerometer housing.

2.2.2 Dynamics of a Rigid Body in a Rotating Accelerated Reference

Frame

In the SSA, it is necessary to contend with both the linear and angular degrees

of freedom. This additional angular freedom complicates the description greatly. We will
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Figure 2.3. Schematic of the six-axis accelerometer proof mass.

be dealing with three specific reference frames: an inertial reference frame, a reference
frame attached to the accelerometer housing, and a reference frame attached to the proof
mass. Since all measurements of the position and orientation of the proof mass are made
with respect to the accelerometer housing, we will derive all of our equations of motion
with respect to that coordinate system.

We will begin the derivation of the dynamical equations by describing the po-
sition and orientation of the proof mass in terms of our three specific reference frames.
After this is done, we will derive the linear and angular velocity of the proof mass in iner-
tial space. This will allow us to construct the Lagrangian for SSA. After the Lagrangian
is constructed, we will derive our linear and angular equations of motion.

The proof mass of the six-axis accelerometer is shown in Fig. 2.3. The unprimed
coordinates are taken as fixed in the body of the proof mass, the primed coordinates are
fixed to the accelerometer housing, and the double primed coordinates are fixed to an
inertial reference frame.

In order to understand the dynamics of the proof mass, we begin by first relating
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the components of a single point, P, as seen in the three coordinate systeins. In the

reference frame fixed to the proof mass, the coordinates of P are, by definition,
z;. (2.20)

This same point, as seen in the primed coordinate system attached to the accelerometer
housing, has coordinates

z, = Rf;:cj +rF, (2.21)

where RF is the rotation matrix which describes the orientation of the proof mass with
respect to the accelerometer housing, and 7 is the displacement of the proof mass away
from the center of the housing. The coordinates of P, as seen in the inertial reference

frame, are

T = R5x9 +rH = RgRJF-;xk + RgTJP +rH, (2.22)

where R is the rotation matrix which describes the orientation of the housing of the
accelerometer with respect to the inertial reference frame, and 7 is the position of the
housing in the inertial reference frame.

In order to construct the Lagrangian which describes the dynamics of the SSA,
we must compute the angular velocity and the linear velocity of the proof mass relative
to inertial space. This velocity will be a function of RP, R, rP_ and r¥. Once this is
done, we will be able to solve for the equations of motion.

We are free to choose the axes of the coordinate system fixed to the proof mass
to lie along the principal body axes of the proof mass, and free to choose the center of
mass to lie at the origin of this coordinate system. Thus the coordinates of the center
of mass in the inertial reference frame are

2 = R+ 4 o H (2.23)

' t

where we have set £ = 0 in Eq. (2.22). This is exactly the same equation as in Section
2.2.1, wheie we described the dynamics of a single-axis accelerometer in a rotating ac-
celerated reference frame. Following the same procedure as in Eqgs. (2.1) through (2.5).

the velocity of the center of mass of the proof mass is

" H_P H_.P - H s
U‘- -_—w;'"c,]k]ﬁklr, + Rikrk + T‘ N (224)
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where w# is the angular velocity of the housing in inertial space, and has components

which satisfy the equation:

. H_l
RERIT = wife. (2.25)
We may now rewrite Eq. (2.24) in vector notation:

v’ =wH x P £ oF + o, (2.26)

where v* is the velocity of the center of mass of the prool mass relative to the housing,
and »f is the velocity of the housing.

Next, we must compute the angular velocity of the proof mass with respect to
inertial space. In this case the displacements of the coordinate origins, 7 and r*/, do
not affect the transformation of a vector. In fact, if f is an arbitrary vector fixed to the

accelerometer proof mass, then we may write
fI'= RERE fi. (2.27)

Ditterentiating this vector with respect to time must give us the angular velocity. We
find
S = RERE fi + RIRE £, (2.28)

and this may be rewritten:

fI'= RERHT'RIRE, i + RERE RET RET'RIIRE £, (2.29)
Substituting Eq. (2.27), we find
fir= (RERH™ + RERERETRIT) g1 (2.30)

Because f is a vector fixed to the accelerometer proof mass, its time derivative must

obey the equation
j{' = e,'ﬂw;’ 1”. (2.31)

Identifying the two coefficients of f” in Eqs. (2.30) and (2.31), we have
! = RURH™ 4 RERD RET RIT. (2.32)
The first term on the right hand side of this equation is, from Eq. (2.4),

RHRH™ =M. (2.33)
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The second term on the right hand side of Eq. (2.32) is more complicated. The two
middle factors, rRPRP™ , can be written, from Eq. (2.4):

. -1
RERET = wPejrk. (2.31)

Substituting these two results into the equation for the angular velocity of the proof
mass, we find

e,-ﬂw = G,le"H + RHGJ,kw'PR . (2.35)

Recognizing that the components of the Levi-Civita tensor must remain the same in all

Cartesian coordinate systems, this can be written:
" o__ "H
€ W5 = ( + RHE kwk )c,ﬂ. (2.36)
Thus, the components of the angular velocity of the proof mass, w, are

Wi = + RBWE, (2.37)

7

where wf is the angular velocity of the accelerometer housing, and R”w? is the angular
velocity of the proof mass with respect to the housing, as seen in the inertial reference
frame.

We can now compute the Lagrangian for the six-axis accelerometer:

1
L= -2—mv” 0"+ %w T-w - V(R +P)y - meg(z"), (2.38)

where V(RP rP) is the potential energy internal to the accelerometer, ¢(z”) is the
gravitational potential energy of the proof mass, m is the mass of the proof mass, and
I is the moment of inertia tensor for the proof mass. The internal potential energy, V',

includes the electromagnetic energy of the superconducting circuitry.

Linear Dynamical Equations

We first compute the dynamical equations for the lincar degrees of freedom.
The generalized linear momentum from the SSA Lagrangian, as measured with respect

to the accelerometer housing, is

oL ov”
P2 — =m — o) = mR} (RUE + R + 717, (2.39)



The generalized linear force, as measured with respect to the accelerometer housing, is

oL
ka = 77
ark
ovy 0%p(z") 0z  OV(RP,rP)
= m—=1v -m -
arf az!  orf arf
N 9%p(z")  OV(R",rF)
= mRl (RHrf + R + #1) - mRY] - . (2.40)
oz? orf

This analysis is identical to that in Section 2.2.1. Setting the time derivative of the
generalized momenta equal to the generalized force. and following the same analysis as

in Eqgs. (2.3) through (2.8), we find
=af, (2.41)

where a is the external acceleration applied to the accelerometer:

0bp(z")
E _ H-V | ~H - P oH
ay = -R{ | #1+ ——— | = 277 k51 — hjmw

J n
azj

H_p -1H_P
; maw TN — €gymWi T,

(2.42)

where 'l = Rf{—‘w”{l are the components of the angular velocity of the housing, as
viewed from the rotating housing. If we rewrite this in vectorial notation, the result is

clear:
af = - # —Vop - 20" x+F - W x (w” X r}) -l xrP, (2.43)

This result is identical to Eq. (2.19). The first term of the right hand side is the accel-
eration of the housing, the second term is the gravitational acceleration, the third term
is the Coriolis acceleration, the fourth term is the centrifugal acceleration, the fifth and
final term couples the angular acceleration to the linear acceleration in proportion to
the displacement of the proof mass away from the center of the housing. This equation
forms the cornerstone for an understanding of the linear acceleration of the center of

mass of the six-axis accelerometer.

Angular Dynamical Equations

The angular equations of motion con now be computed. In order to correctly

compute these equations, we must incorporate six constraint equations that insure that
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the state variables, R,J, are varied in such a way that the matrix RF remains an or-
thogonal transformation. We can do this by using ihe method of Lagrange multipliers,

whereby we add our constraint equations to the Lagrangian. We find
1 1
L= §m'v" "+ g Tw— V(RF,rP) - mo(2") + Aim (R,’;R,’;p - 5,m) . (2.4
where ), is symmetric. This will insure that the matrix RF remains orthogonal, i.e..
R R — b = 0. (2.453)

The generalized angular momentum from this Lagrangian can now be computed:

1P

ac o Ow
proe 28w Y g ()
OR} ORE OR:,
&./,P
YT Iy (@3 +7), (2.46)

where we have made the substitution

Ilq = RH—XIII RH

we

{2.47)

for the components of the moment of inertia tensor, I, as seen in the reference frame of

the accelerometer housing, and made the substitution

'H H‘HH
q——R v

w (2.18)

for the components of the angular velocity of the housing, as seen in the reference frame
of the rotating housing.

The generalized angular forces can similasly be computed:

ac
P _

ORE
awuk 8V(RP,7'P) | }1,’(1

= [{w"q = ———— + ARy, + MR+ sl — @
BR,'; o 61?5 J J 2 ()R"; 9
o'l OV(RP +F)

= BR;, Ilq< 'H+w'f) T T o + 20m RE 4+ wo Loyl (2.19)

o 5

where we have used the symmetry of A, and made the same substitution for the compo-

nents of I and w?
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The partial derivatives of w® can be computed by recognizing (from Eq. (2.34))

. 5P op-1 .
that w? is the dual of R' Rf 1, ie.,

P l ’] - -
W o= §f,pmﬁ,ﬁnn’ (2.50)
The partial derivatives can now be computed:
()w’,P 1 p .
(‘)RP = E(lxm Hm_}v (2.51)
o
f)w'{) 1
T = - (flml?m] (2.52)
ORL 2
Substituting these expressions into the equations for N and P gives
g I 1
3y v P P
i 1 X N OV(R .r")
N = Sam RO L (W5 +9)) = ———— 4 2R, 2
an;,
+ wm ]mJW:-
> 1 , H .
PV = = Sam B I () 7). (2.51)

The angular equations of motion can now be computed. Setting the time deriva

tive of the generalized momenta equal to the generalized force gives

! P oH Ll
S T (w2 =

NV(RY »P)

P gt H P . P
(Ixmlfmjllq ( +Wq) - T '+‘2/\UYIRmJ
v
‘Ilm HYFV;J 11'1 ( 2 + w;})) + wml’“]“":' (2.53)

Lagrange’s equations can be simplified by multiplving both sides by R”7' . and substi

tuting Eq. (2.34) into the result. We find

;c”,l,q( 'H+w ):

H P
(lnm(mnj“f',,':ll,q (qu + ! ) - ]‘)J]:‘ "__}‘—" ‘{’ /\r_; ‘* “"m Im) !
OR"
! 4 1H 14 g g
+ 5((U]1q (wq +wq ) . (2.086)

This can be further simplified by making the substitution:

14 /I' ey ==
117 = W, ”"”llnq + (,,,rml{” (2.50)



and applying the identity:
€lhimfujm = 51u6ij - bl;ém- (2.58)
We find

-;-q,.»l{q (@ +of) =

OV(RE ")

) , /H ' H P P Y
bt Iy (o Wy )+ T (W W) - R YR + 20,
Uop, 1
+ 5w W'D - §w;P1{qwq + QQ‘JI,Cqumw'PUu;” (2.59)

This set of nine equations can be viewed as a 3x3 matrix of equations. These
equations contain the six forces of constraint, A,,, that force the components of RP 1o
satisfy the condition that RF be an orthogonal transformation. They can be eliminated
by separating the symmetric and antisymmetric portions of our matrix of equations.
This will leave us with six equations which contain the constraints, and three equations

which do not. We find. for the symmetric part of our matrix of equations.

. _ T SN 2 dHO P
2A, ”*’[’q(w +w")—§(w'117+“"Jlxq>(“ﬂ +“’7>
[, OVIRY.P COVIRT Ty
o Ry ——— R, ———— |- (2.60)
- iR}, IR",

These equations give us the forces of constraint.
Substituting these forces back into our nine equations of motion elimirates the
symmetric part of the matrix of equations. Taking the dual of our matrix of equations

leaves us with the antisyvmmetric portion:

l ' ’ ! ' A
-1 H e AT, +H 17 .
(k‘i]:;'l_llllq (w‘ 3 + .u'q ) = (kl]bl]w.l ]“‘, (w' 7 T oW ,’,) +2(k,}/\u
. P PoH
TN U PR,
p V(R
- —— RN
'lu) R)u 5 . (_.()1]
an

1

This can be simplified by using the identity in Fq. (2.58), and dropping all symmetric
terms. We find

P

P i r Pl p I R".r

’ X / ’ P ’ 3 .

qu “Ik - 20kw ’,,w g t Ik, quwy o w,  t mv/f,“ '—*)—H,‘;— o 2.62)
(
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These are Fuler’s equations in the reference frame of the accelerometer housing.
The last term on the right hand side of this equation is the applied torque from
the coils surrounding the proof mass, i.e.,
oV (RF #F)

Tl: = €k R’; - - (2(;)
™ BRP

To see this more clearly, we will reduce the problem to two dimensions, and force :li

rotations to take place in the z-y plane. We can then define

3
RP = J (2.61)

where J? is the generator of rotations about the z axis, and has components J! = -« 4.
In this two-dimensional simplification, V(R . »") can only be a function of #. The
torque generated by the potential 17 is
av
Th= - — . (2.65)
e

We can rewrite this. using the chain rule of calculus:

oV oV OR[
s all
= - — =- )
I¢L] (')Hkl e
av Jdv
3 pP P N
= - r ']km [{m) = ('hj ll’ju _‘7 . ! ..')."()'
(?[{kj dl{m
Thus Euler’s equation can be rewritten:
q
r P r -0l . dP ' P gt 9=
quu-/'q = ‘-qu‘u/'q — 2(kl)“’ N 1_}!]'” q + Ik‘q"i'_"‘"x - + Ik nh)."t !

The components of the moment of inertia tensor. I. are kiown explicitlv. only
in the reference frame of the proof mass. Since we have chosen our axes to lie along the
principal axes of the proof mass, I is diagonal in this reference frame. If the proof mass of
the accelerometer is completely syinmetrical so that all three principal moments of inertia
are equal, then the moment of inertia tensor will be diagonal in all rotated Cartesian
coordinate systems. This allows us to simplify the right hand side of Euler’s equations.
If the proof mass was not completely svmmetrical, then terms coupling the square of

the angular momentum of the housing would introduce errorsin the measurement of the




20

angular acceleration of the accelerometer housing. Setting 1{1 = Ié;, in Eq. (2.67), we
have

107 = 1) = -1 - TP (2.68)

This equation forms the cornerstone for an understanding of the detection of the angular

acceleration of the housing with respect to inertial space.

2.2.3 Accelerometer Equations of Motion

We have now completed our description of the dynamics of the SSA. This
description does not yet describe how a measurement of the orientation of the proof
mass will allow us to measure the angular acceleration of the accelerometer housing. In
order to complete this description, it is necessary to pick a particular set of angles with
which to describe the orientation of the proof mass. This will then allow us to combine
the kinematics of this description with Euler’s equations. and derive explicit angular
equations of motion which will directly relate the orientation of the proof mass to the
angular acceleration of the accelerometer housing.

The detection of linear acceleration is, on the other hand, completely described

by Eq. (2.41):

o+ — ———— =af. (2.69)
m 3rk
where
af = i —Vop - 2M x #P - Wl x (w" x )~ of xrP. (2.70)

The superconducting coils surrounding the proof mass generate the potential
V. The position of the proof mass with respect to the housing is controlled by these
coils. The coils are rigidly mounted to the housing of the accelerometer. Ideally. in an
accelerometer, we demand that this applied. i.e., measured. acceleration is equal and
opposite to the acceleration of the housing. It is clear from Eq. (2.70) that, in order to
equate the linear acceleration of the housing to the linear acceleration of the proof mass.
we must keep the displacement of the proof mass from the center of the housing, r¥,
and the velocity of this displacement, #F, to a minimum.

This can be achieved by using force rebalance feedback. This type of feedback

effectively stiffens the magnetic spring between the housing and the proof mass. and
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at the same time dampens any oscillations. The applied feedback exactly cancels the
acceleration of the housing and holds the proof mass at rest with respect to the housing.
This forces ¥ and #¥ to vanish.

Although Eq. (2.68) completely describes the angular motion of the accelerome-
ter, it is not clear how a measurement of the angular position of the proof mass describes
the angular acceleration of the housing. The orientation of the proof mass of the SSA
can be described by the rotation matrix R, but such a description is not convenient. In
order to explicitly describe the motion of the proof mass, it is necessary to parameterize
the rotation matrix in terms of three angles. The usual choice is to describe R in terms
of the Euler angles. If we were to describe RP in terms of Euler angles, then we could
write (5]

R = c¢1369126wJ3. (2.71)
where J*, i = 1,2,3, are the generators of rotation abeout the i-th axis, and have com-
ponents J;k = —¢k. The Euler parametrization of the rotation group has many ad-
vantages, but in examining Eq. (2.71), it is immediately apparent that, for small angles,
there is no simple relationship between rotation about the x axis, and ¢, 8, and ¥. Thus,

we will instead choose the parameterization:
1 2 3
RP = ef=d 8" 0: " (2.72)

This places rotations about all three axes on roughly equal footing. Although the angles
0, 0y, and 6, do not exactly correspond to rotations about the z, y, and 2 axes of the
accelerometer, for small angles this is a good approximation, and it makes the succeeding
calculaticns more tractable. The fact that the three successive rotations do not commute
will lead to equations with nonsymmetrical cross terms in the second and higher orders.
However, it will be seen that these unsymmetrical terms eventually drop out. Expanding

Eq. (2.72) into explicit matrix form, we find

cosf,cos, —cosf,sind, sinb,
RP = cosl sinb, + sinf sinbycosl, cosb cosd, — sinf sinfysinf, —sinb cosh,
sinf sinb, — cosfsinbycos8, coslrsinfysinf, + sinf,cosf, cosf cosb,
(2.73)
Substituting R” into Eq. (2.50) and solving for w?, we find
dé, dé,

1P . D)~
w = sinf, —=% 4 —ZX 2.74
! Yodt dt (2.74)




22

P df df

wy = cosb; —dfi —sinf;cos b, d—tz , (2.75)
dé dé
1P z i y
= 0. cosd, — 8, — . 2.76
w3 cosf; cos b, 7 + sin 7 ( )

These equations relate the rate of chaunge of our three angular coordinates to the angular
velocity, wP.

In order to write Euler’s equations explicitly in terms of 8., 8y, and §,. the
torque (Eq. (2.63)) applied by the superconducting coils surrounding the proof mass
must be related to partial derivatives of the potential V' with respect to 8. Ornce more

utilizing the chain rule of calculus, we may write

oV oV R, oV v
- = _ = - JnRY = e — RE, (277)
96, ORE. 00, ORL, R,
= 1!,

where we have substituted our parametrization for RY. The partial derivative of the

potential, V, with respect to 8, and @, can similarly be computed:

- P
_6_‘/ _ ov BRkj - 2% <601J,J2€‘01‘]I) an
08, ORE; 06, OR{, km
ov
= - — (12c0501+.133in0r) wa
ORY, km
= Tycosb, + [3sinb,, (2.78)
1% vV IRy,
8.  ORrL, 09,
oV
= - — <69‘J1eoy‘IQJ:’P_HVJZC"e‘Jl) Rfu
aRfj km
6V 1 5
= - [69“]] (Jlsin0y+.]3c050y) e—o,J] R,fu
P
aRk] km
v . ,
= - (Jlsinﬂy—stinOrcosOy+J"c050rc050y) R,’;J
()RI,:J km
= sin6,T| - sin@,cos 8,1, + cos 8, cos 6,75. (2.79)

Solving Eqs. (2.77), (2.78), and (2.79) for T}, T}, and T3, we find
ov
T o= - (2.80)
00,
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oV sin 8, ov sin 8, sin @, v

T, = —cosb, — _— = 2.81

2 cos 0z o0, | cos8, 7p, cosly, 29, (2.81)
g, OV 1A% i ov

T = _cosf, IV sin 6, — cos 8, sin b, o (2.82)
cos by g9, 00, cosby 94,

This completes the parametrization of RFP in terms of 6,, 6,,and 6,.
We can now compute Euler’s equations in terms of these angles. Substituting

the expressions for T} and wa into Eq. (2.68), and solving for 6., éy, and 6,, we find

6, = cosf,tan Gyd):’,H — sin @, tan OdeQH - w;”
wift oo ; : N
0 z = 0 r xr
+ cos 0, (sm 0, — cos by cos 0,0, + sin b, sin 8,60 )
wé” : . ; . ; wit o
cos0,; (cos 6:6. + sin 8 cos 8,0, + cos 8 sin Gyﬂr) - MOL, sin @,
_ by Bbysing, | Ltand, A U T (2.83)
cos f, cosd, Lcosy pg,  1cos?by pg ' .
, = —cosfuwf! —sing 0 + (w{,” cos 8, — wi sin 0:) (9, + sin 0y02)
. 10V
- wif cos9,6, - e + 6.0, cosb,, (2.84)
a8,
b - _cos 0xw,3” sin 0,‘;},2,,
cos 8, cosf,
1 . . wl”l .
H _: H ;
- (wg sin 0, + wy}" cos 0,) ) (0,,- + sin 0y02) + cosl 5, 6y
1 1'% tang. OV .. 1 . .
- an y + tan 0!,0!,02 - __O.rey- (285)
I cos?8, 0, 1 99, cos 8,

Unlike the equations for the linear acceleration of the six-axis accelerometer,
these equations which relate the acceleration of 8, 6,, and 8, to the angular acceleration
of the accelerometer housing are highly nonlinear. This is not a difficulty, since the
proof mass of the accelerometer is surrounded by superconducting coils which confine its
motion and force all § and 8 terms to be small. Thus we can linearize our equations of

motion, and drop all second order terms. Expanding Eqs. (2.83), (2.84), and (2.85) to
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first order, we find

. 0V 6, OV
T
. 1%
b+ = o g e, — W, (2.87)
I g,
.10V 6, 9V
bty — = - +00" -0+, ¢+ — (2.58)
09, 00,

These equations are much more reasonable, and clearly show the connection between the
dynamics of the proof mass and the angular acceleration of the housing. It is clear that,
in order to equate the angular acceleration of the housing to the angular acceleration of
the angular coordinates of the proof mass, we must keep the angular displacement of the
proof mass from the center of the housing, 8, and the velocity of this displacement, 6.
to a minimum.

This can be achieved by applying force rebalance feedback to the angular de-
grees of freedom. This effectively stiffens the dynamics between the housing and the
proof mass, and at the same time dampens any oscillations. The applied feedback ex-
actly cancels the acceleration of the housing and holds the proof mass at rest with respect

to the housing. This forces 8 and 8 to vanish.

2.3 Superconducting Circuitry

The superconducting inductance bridge has been analyzed in detail by Paik [12]
as a readout circuit for a gravitational-wave transducer. Input and output impedances,
and forward and reverse transductances of the inductance-bridge transducer have been
computed. Here we carry out a similar analysis, with less generality, for a more complex
system: a six-axis accelerometer with a levitated proof mass.

We have taken our analysis as far as we are able without restricting the design to
a particular geometric configuration. In this section we will present the actual geometry
of the proof mass and describe the positions and orientations of the superconducting coils
which surround it. We will also examine the superconducting circuitry which controls,
levitates, and senses the position and orientation of the proof mass. We will compute the
potential energy, V', of the superconducting circuitry, and derive the transfer functions

that relate the output current of each bridge circuit to the applied displacement of the
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proof mass. We will not, however, describe any construction details, but rather defer
that discussion until a later chapter.

Figure 2.4 shows a perspective view of the proof mass for the six-axis accelerom-
eter. Each of the three intersecting planes which make up the proof mass is defined to
have a thickness of 2d, and a length of 2L. Twenty four sensing coils and twenty four
levitation coils are mounted on eight titanium coil forms, as shown in Fig. 2.4. Each of
the coil form surfaces on the titanium cubes contain one sensing coil and one levitation
coil. Each of the coils in the accelerometer is labeled according to its position with re-
spect to the proof mass coordinate system. For example, Lfyz is the inductance of the
sensing coil above the zy plane in the +z, +y quadrant on the —z side of the proof mass.
Similarly, Lé’n is the inductance of the levitation coil above the yz plane in the —y, +=z
quadrant on the 4z side of the proof mass.

Each of the coils which surrounds the proof mass remains fixed to the ac-
celerometer housing. The distance from the center of each coil to the proof mass surface,
and the orientation of each coil with respect to the proof mass surface changes as the
position and orientation of the proof mass change. This forces the inductance of each
coil to change since the Meissner effect excludes all magnetic flux from the body of the
proof mass. Before we can understand how the superconducting circuitry functions, it
is necessary to compute the inductance of each superconducting coil in the SSA.

Paik [10] has shown that the inductance of a spiral coil above a superconducting
plane is

L=Lo+Ar=A(ro +71), (2.89)

where A = p2An?, A is the area of the spiral coil, rq is the effective spacing of the cail
above the superconducting plane, and n, is the number of turns per unit length along

the radius. This expression can be expanded to include second order terms, i.e.,

L:L0+Ar—%rz—§

where 4 and 8 are nonlinear coefficients which describe the change in inductance through

62, (2.90)

second order for displacement (7) and orientation (). These coefficents will play a major
role in determining the resonance frequencies of the SSA. These coeflicients are important
when the size of the levitation or sensing coil begins to approach the equilibrium distance
away from the superconducting plane. We will calculate these parameters in Chapter 4

for our particular design.
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(
prd

Figure 2.4. Perspective view of the six-axis accelerometer proof mass and coil forms.
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Coil | x | y z | Coil | x | y z | Coil | x y z
Lizy | ¢ d € | Lyy; | ¢ c d | Ly | d c c
Lz | c d | —c|Lzy, | -c| c d | Lyz | d | —c| ¢
Lizy | —c| d | —c|Lzg, | ~c|~-c| d | Lyzr | d | —¢c| —c
Lz;y | —c| d € | Lyg, | ¢ | —c| d | Ly | d c | —¢
Lesg| ¢ | =d| ¢ | Lyyz | ¢ c | —d| Lyz|-d| c c
Lizg | ¢ | -d|—c|Lzyz | —c| ¢ | -d|Lyz | —-d| —c| ¢
Lizg | —c| —-d | —c|{Lzz | —c| —c| -d| Lz | -d| —c| —¢
Lz.g | —c| —d| ¢ | Lygz | ¢ | —c| —d|Lgz|-d}| ¢ | —c

Table 2.1. Initial position of the center of the superconducting coils with
respect to the center of the proof mass in the six-axis accelerometer.

Knowing the initial position and orientation of each coil allows us to compute
the new sparing and orientation of each coil with respect to the proof mass. This new
spacing and orientation, when combined with Eq. (2.90), describes the inductance of
each coil in the SSA as a function of the position and orientation of the proof mass. If
z' is the initial position of the center of a coil, then, from Eq. (2.21), the coordinates of

that point, as seen in the coc:dinate system atiached to the proof mnass, arc

zj=RE " (¢f-r7). (2.91)

?

Only one of these three coordinates will have any significance. For example, in order to
compute the inductance of the L.y, coil, we need to know the displacement of the coil
from the surface of the proof mass. After our transformation of the initial position of
the L., coil, only the z component will be needed, as the new position in z and y will
not affect the inductance of the coil, since the Ly, coil lies parallel to the z-y plane.

The initial position of the center of each of the coils in the accelerometer is
given in Table 2.1, where d is the initial separation of each coil from the center of mass
of the proof mass along the normal direction of the coil, and ¢ is the initial separation
of each coil from the center of mass along the direction parallel to the coil surface.

By taking the inverse of Eq. (2.73) and applying Eq. (2.91) to the initial position
of the center of each coil, and expanding through second order in @ and r¥ | it is possible

to calculate the displacement of each coil away from the proof mass surface. A similar
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calculation yields the orientation of the coil with respect to the proof mass. Substituting

the displacement and orientation into Eq. (2.90) for each coil in the SSA, we find

Lzzy =

Lx?y =

Lz;_z_"y- -

ery =

Lz.y =

Lryz

L?yz

Lz,

inz

Lo+ A [—T + 0(01- - oz) + Ceygz — 1.0 + 1.6, - d(af + 03—)/2]
B

_5 1- +c (0 _02) -—21'yc(01-—02)] —§<02+03),

Lo+ A [—Ty + (-0, — 92) - Cezey - 1,0+ 1.0, - d(oz + 93)/2]

Y 8
- 2 [+ 0,+g,)2+2ryc(o,+o,)]—5(03+03),

(2.92)

(2.93)

Lo+ A [—r,, +c(—8: +0;) - 0,0, — 1.8, + 1.6, — d(67 + 03)/2]

_ % [1‘: + 62(01 - 92)2 + 2Tyc(91‘ - 02)] - ; (0; + 0§) ’

Lo+ A [—ry +c(6,+8,)+ 0,8, — .8, + 7.0, —d8+ 03)/?]
_ % [rj + (6 +0,) — 2ryc(8; + 0Z)] - g (62 +62)
Lo+ A[ry + c(~0: +8:) = 0.6, + 7.8, ~ 1.8, ~ d(82 + 6)/2]
_ % (12 + c2(8: - 6.)% - 2ryc(6. — 6.)] - ‘; (62 + 62),
L0+A[r +o(B; +0;) + 0,0, + 1.0, — 7 e,_d(02+92)/2]
[r + X8 +8,)% + 2ryc(8; +6.)] ——(02+o ).
L0+A[ry+c 0, —0,)+ 0,0, +r,0; — 1y —d(02+02)/2]
- % [rg +¢X(0: - 6,)" + 2rye(8: — 8,)] - & (92 +6?),
Lo+ A[ry + c(~0; — 6.) = c8.8, + r6; — 6, — d(62 + 67)/2]
L[R2 20+ 0.7~ 2rge(0e +02)] 5 (62 462),
= Lo+ A[-r. +c(8y - 0:) = .8, + 1,8, — d(82 + 62)/2]
—%[r + X8z - 0, + 2rc(8: - 8,)] - ;(92+92)
= Lo+ A[=ro+ (=0 = 0:) = roBy + 1,6, — d(62 + 62)/2]
- 2 [P+ O+ 0,7 4 2mc(8: 4 0,)] - -j- (62 +62)
= Lo+ A[=re+ (=8 +0,) = 8, + 1,0, — d(82 +62)/2]
_ % [r’;’ + 26, - 6,)% - 2r,c(8, - ey)] - g (62 + 03) ‘
Lo+ A[~re +c(By +82) = .6, + 1,0, — d(82 + 62)/2]

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)
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. % [P 4 282 +8,)* = 2rec(8: + 8,)] - = (624 62),  (2103)
2

+ 4 /z]

1‘&.’“

_2 [rg +c2(6, — 6,)% + 2r,c(8; — 6, )}

! (02 + 92) (2.104)

Lzjz = Lo+ A[rs+c(0,+6,) + 7.8, - 7,0, - d(az +62)/2]

Y2, 2 2 B (a2 2
-1 (72 + (6 + 0, + 2r.c(8- + )| - 5 (62+62), (2105)

Lz = Lo+ A[r: +c(8, - 0:) + 7.0, — r,6, — d(62 +62)/2]

- % (72 + (02 ~ 8,)7 — 2r.c(6. - 6,)] - g (62+62),  (2.106)

Lz = Lo+A[r.+ (=0, —0.:)+ ra8, — r,6; — (6] + 93)/2]

X e 4 20, 4 8,)% — 2r.c(8: + 6,)] - /3 62 + 6] (2.107)
2 { z y

Lo+ A[=7e 4 c(8: = 8,) + c(8,8x +8.6,) — 1,8, + .0, — (82 + 6212

_ % [r";’ + (8, - 8,)% + 2rrc(8, — oz)] - g (62 + 03) : (2.108)
= Lo+ A[-rs—c(6: +6,)+ (6.0, — 0,6.) - 1,0. + 1.0, — d(6? + 62)/2]

_ % [r2+ c(8, +8.)% + 2rec(6, + 6.)] - g (62 +67), (2.109)
= Lo+ Al-rotc(By —8:) - c(6,6: +0:0:) — r6. + .0, — d(8? +62)/2]

_ % [rg + %8, — 8,)? — 2r,c(8, — ez)] - g (eg + 03) , (2.110)
= Lo+ A[-rotc(f+6,)+c6,6: —6.0,)~ 8. +r.0, - d6? +62)/2]

- % [r2 4+ (6, - 6.)? - 2r,c(6, + 8,)] - /-;- (62 +62), (2.111)
= Lo+ Al +c(6y—6.) - c(8,6, +6.6:) + r,0. — 1.0, — (62 + 62)/2]

- ;1 r2 4+ X8, — 0,)? + 2roc(6, ~ o_,)] B (02 +62), (2.112)
= Lo+ A[rs +c(8: +6,) +c(8,0: — 6:6,) + ryoz — 1.0, - d(62 + 62)/2]

_% r2 4+ cX(8, + 0.)? + 2r (8, +9)]-§(9§+03), (2.113)
= Lot A[re 4 (B = 8,) + (6,6, +0.6,) + 0. — .6, — (6 + 07)/2]

- % [r3 +cX(8, - 8,)% — 2rzc(8, - 92)] _B (02 +62), (2.114)
= Lo+ Alr,— (8, +8,)+c(8:0; — 0,0,) + r,0. — r.6, — d(6? + 93)/2]
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- % r2 4 c2(0, + 6,)7 — 2rec(8y + 8.)] - g (62 + 22, (2.115)

where we have simplified our notation from r¥ to r, since, from this point on, we will only
be interested in displacements of the proof mass relative to the accelerometer housing.
The fact that the equations for inductance are not symmetric stems from the non-
commutivity of the three successive rotations used to describe the orientation of the
proof mass in Eq. (2.72).

Although each coil form in the accelerometer contains two coils, they share
a common center, and we have been able to treat them identically. Thus, both the
levitation and the sensing coils obey the same formula for inductance but the parameters
Lo, A, B, 7, and d are different, so, later in our formulas, we will distinguish these coils
by substituting Ls, As, 8s, vs, and ds for the sensing inductance parameters, and L.
AL, BL, 7L, and d, for the levitation inductance parameters.

The SSA is oriented in the so called “umbrella” orientation, so that all three
sensitive axes make the same angle to the vertical. This orientation is identical to the
orientation of the gravity gradiometer, and has the advantage of distributing the pull of

gravity equally among the three axes.

2.3.1 Levitation Circuitry

In the presence of gravity, the r;, 7y, and r. levitation circuits each must equally
levitate the proof mass. These three circuits are shown in Fig. 2.5. In examining the 7
levitation circuit, we sec that all four of the levitation coils are located at the back of the
r plane of the proof mass. If a current is stored in the 7 levitation circuit, all four coils
will push the prool mass upward equally. This is the source of the force that levitates
the proof mass. The additional transformer is included simply so that we can add or
subtract current from the circuit in order to raise or lower the proof mass position and
apply feedback.

The 7, levitation circuit contains a single loop about which the trapped flux
must remain constant. We can treat the five inductances in this circuit as one equivalent

inductance:

[zyzf+ lzgz'.i"""]zﬁ‘f'{“ [/y?}‘+ L. (2116)

If we store a levitation current, [, , in this circuit, then the amount of trapped flux is

L.
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Figure 2.5. Linear superconducting levitation and feedback circuitry.
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(4L + L)I,,, and the potential energy of this circuit is, thercfore,

(4Ly + L)212,

Ve, = -
* 2(LyzE+ngf+Lyz—I+ I_yz—r-{fL)

(2.117)

Substituting the required inductances, and expanding this to second order in r and &
gives
(4L + L)1} 2 8A7 2 2
V,, = ——= -2 A7, — 17 r;
x 2 LALT + 4LL+L+"/L LT
+ 212 AL (8. — 0ury) + 12, (Ardy + Pyp + Bu) (62 +62) . (2.118)

Thus we see that our r. levitation circuit provides a levitation force, 2133/\1‘, and an
additional spring constant, 2(8A% /(4L + L)+ vL]I%, . There is also an interesting cross
coupling term.

Similar analysis of the r, and r, levitation circuits leads to

Lo+ )7, RA2 ) 2

Vry = —2 y _ eryz'\LT‘y + <_——1L1_, ; + Iryry
+ 212 AL (Bore — 6zro) + 12 (Ardy + Py + 80) (624 62) . (2.119)

(4L, + L)I? ) 8A? 2

v, = L2k oprpp i )1

z 2 Ts LT~ + 4LL+ L + L r;r~

+2A2 AL (8ery — 0,r) + T2 (Avdy + Py + 3,) (62 4+62) . (2.120)

The three angular levitation circuits are a bit more complicated. These circuits
are shown in Fig. 2.6. Each of the three circuits contains four levitation coils, and one
feedback transformer. Each set of four levitation coils is mounted on the upper side of
one of the proof mass planes. The 8, circuit contains the four levitation coils on the
upper side of the proof mass’s z plane. Two independent currents are stored in each of
the two superconducting loops in the angular circuits. In the 8, circuit shown in Fig.
2.5, the current in the loop on the left, [)4_, tends to rotate the proof mass about r axis
in a counter-clockwise manner, and the current in the leop on the right, 154, . tends to
rotate the proof mass about the z axis in a clockwise manner. Both currents tend to
push the proof mass downward in the — > direction. The feedback transformer is included
so that the angular position of the proof mass can be controlied. If the same current is
stored in each loop of the 8, circuit, then any additional current added by the feedback

transformer will tend to decrease one current and increase the oilier. This change in
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Figure 2.6. Angular superconducting levitation and feedback circuitry.
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the currents in the two loops will apply a torque to the proof mass. This can be seer
quantitatively by computing the potential energy of the . levitation circuit.

The two flux conser.ation equations for the 8, circuit are. ignoring 14, s,

2141,110, + (1101 - IQ&J)L, !2]31 |

(he, + t1)(Legz + Lzg.) + (g, + 1y — T29, — 12)L

(1291 + ig)(nyz + L;yz) + (]293 + 19 — 110, - il)L = 2[,141291 + (Iggx - ]1‘9: VL. (2.122)

The potential energy of the 8, levitation circuit is simply the electromagnetic energy

stored in the inductances:

) 1 . 1 .
Vo, = E(Lrﬂz + Lyg: )(Lyg, + i)+ §(l/ry: + Lyy: 1y, + 12)°
1 .
+§L(1291+i2—1191—11)2. (2.123)

Solving Egs. (2.121) and (2.122) for #; and i, substituting these currents and the required
inductances into our expression for Vj,. and expanding Vp, to second order in r and 6

gives

1 .
Vo, = (IZ5, + 1§ )L + 5(129, ~ Iy, )’L

+ (I3, + T3 )ALre + (120, — I§5,)cA 182

AL 2y (1, 4 Dygy oM 2
‘r N
2 e T he o T

13 +1?
+ (I3, + lg‘)LL+L

. A2(2L, + L | .
+ (1'226, - [1201) [—[L[((L—[[«f-[—j) + 11 c@rrz + ([12(0x +- ]5‘5;2 ).\L(f)yrr _ O,ry)
c?A? . LAZe?
By + 1% ) —102 4 (1, - 115, )P 62
* Uag, ‘”')1 G AL LSy Sy
1 . . . . .
+ 5(122,9, +1%.) (AL(ZI, +ety + /ﬁ) ((Jﬁ + 0;) . (2.124)

This potential looks quite complicated; however. we can iminediately recognize the main

features. The difference in the two ~urrents Iy4, and 4, applies a torque to the proof

mass about the r axis, and both currents push the proof mass downward in the -z

direction. The rest of the terms describe the “magnetic” spring due to the circuitry.
Similar analysis of the 8, and 6. levitation circunits gives

. 1 "
Vo, = ”20 +1|9 )L+ (120 - lig,) 1

v

+ (128y + I][?y )‘\I,T_r + (Izgv - Ilzey )(‘A\Lgy
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+ (I35, + 1%5,) AL r2 4 (L, + I1g,)* LA
Wy TG TN T o L+ L)t
A2(2Lp + L) ,
+ (]220y - Ifoy) [LITLL—‘FL_) + 71| ey + (]129,, + Izzey)AL(ezry —0,7.)
2A2 LA? 6‘2
]2 72, - 0L B RV L 2
+(20y+ 16 )L + L y+(20 loy) 2LL(LL+L)y
1
+ 5, + 15, (Avdy +c2ye + 1) (62 + 62)
— (I35, — 11, )ALcB.6., (2.125)

1
Vo, = (I35, + I, Lo + 5(120, — Ne,)*L

+ (122'91 + 11292 )ALTU + (1'229z - 1129: )CAng

L’\2 .
+([20 + 16) re

r2 4 (Iyg, + I1p,)*

+L y 2Lp(L + L) Ty
2L + L )
+ (1220; 119 ) [ IL((LLL+ L)) 7L] Cozry + (Ilzgl + 1:2201 )AL(osz — 027'1)
+(12 + 12 ) C2A 92 (] _ I )2 LAiCQ 2
26, 16, L L z 28, 16, 2LL(LL n 11)
+ i, 4 p ) (Ad + e+ BL) (82 + 62 2.126)
AL 16, Lar + ¢y + b (I+, . (2.

We can now combine all the different potentials applied to the proof mass by
the superconducting levitation circuitry. Because the SSA is operated in an umbrella
orientation, equal amounts of levitation current are stored in the three linear circuits,
thus we will let I,, = I, = I, = I in Eqgs. (2.118), (2.119), and (2.120). Similarly,
we will store equal amounts of levitation current in each of the three angular circuits.
Since we do not initially want to apply any torque to the proof mass, we will store equal
amounts of current on each side of the angular circuits. With this in mind, we will let
L, = Iy, = hip, = Iyp, = Iig, = Ig, = I_ in Eqs. (2.124), (2.125), and (2.126).
Combining all these equations together, we find that the total potential energy of all the

levitation circuits together, Vp, is

3
vV, = 5(4LL + D)2 461 Ly + 212 — IAL(re + 7y +72)

A} 8A2
212 L [2 2 2 g
[ "It (41,L+1,+7") | (rztry 1)

2, g2 , c?A2
+ [2(1+ + [_)(A,d, +c? L +A}L) + 21_m_1

+ 2012 ~ 17 DAL, =1+ 0, (rr —7,) +0.(ry, — 1)) (2.127)

}(02-{*92-}-02)
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2.3.2 Sensing Circuitry

We have claimed that the sensing circuitry in Fig. 2.7 will provide us with
information about each of the six degrees of freedom. At this point we will analyze the
sensitivity to motion in the r, degree of freedom. The r, sensing cir.uit can be simplified
to the circuit shown in Fig. 2.8, where we have replaced the other sensing inductance
bridges by their equivalent inductance at equilibrium, Ls. The load on the portion of
the circuit sensitive to r; is then Lgg + 5Ls, where Lgg is the input inductance of the
SQUID amplifier.

The sensing circuit for 7, in this simplified form, contains two independent
superconducting loops about which the trapped flux must remain constant. In this case.

the initial flux is zero, and we may write two flux conservation equations:
(Lysz + Lyzz) I + Lyzzlgcos(w, 1) + (Lsg + 5Ls)i-, =0, (2.128)

(Lﬁ; + Ly’z—r)l — (LSQ +5Ls + Ly—u- + Lyz—r‘) tr, + Lyﬁfo cos(wy t) = 0. (2.129)

Solving these two equations for the current through the SQUID amplifier, ¢,,, we find

[0 cos(w,,t) (LyerQ_zr - LizELyﬁ)

[(LSQ + 5L5)(L'y'zf + Lyzz: + Lﬁr + Lyﬁ) + (Liz? + Lyzt)(Ly-zr + Ly??)]
(2.130)

Substituting Eqs. (2.113), (2.108), (2.110), and (2.115) for Lg.7, Ly.z, Lyzz, and L3z,
respectively, into the above equation, we find, after expanding to second order in » and

o,

(2

.. = I COS(UJ 1) Asrs + As(ry0, — Tzoy) _ Cz(Ag + 75145)03102
re Tz LSQ+6LS L5Q+6L$ LS(LSQ+6LS)

(2.131)
Thus we see that 1, is directly proportional to the position of the accelerometer in r.

Similar analysis of the y, z, 8., 8,, and 8, sensing circuits leads to

ir, = locos(w,t) Asry As(r.0; — r26.) 2(A% +9sLs)6:8. 1
_L5Q+6L5 Lsg+6Ls Ls(Lsg +6Ls) ]
(2.132)
i = Tocos(wt) | DSz Asirefy, = r,82)  cA(AL +95Ls)8:6, ‘
| Lsq +6Ls Lsq+6Ls Ls(Lsq +6Ls) ]
(2.133)
2
is, = locos(ws,!) |7 S;Aiog I (/259 (;Zzlf ();f;;’ (2.134)




SQUID

Figure 2.7. Superconducting sensing circuitry.
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Igcosw,t

Figure 2.8. Simplified superconducting sensing circuitry for the r, degree

of freedom.
. cAsl, (Azg +vsLs)cl,ry — LscAs8.6,

= = - 2.135
19, Io cos(wgvt) [LSQ T 6Ls Ls(Lsg + 6Ls) + , (2.135)
. cAsh, (A% + 75L5)C017‘y
! = [ t 2.136
o o cos{uws, 1) [LSQ +6Ls = Ls(Lsqg +6Ls) ( )

The final current that flows through the SQUID is the combined total, i,
+ tr, + iy, + 15, + 19, + 1g,, and if each bridge is modulated with a different frequency
current, then it is possible to recover each individual output. This is accomplished by
utilizing six lock-in amplifiers, each one tuned to the separate carrier frequency.

Each sensing circuit will affect the dynamics of the proof mass. As the proof
mass changes positicn with respect to the bridge inductances, the currents flowing
through the circuit must redistribute. This change in current patterns redistributes
the energy stored in the sensing bridge and changes the magnetic potential energy. As
the amount of sensing current is increased, the stiffness of the “magnetic” springs sur-
rounding tke proof mass is increased. In order to understand this quantitatively, it is
necess2ry to compute the amount of energy stored in the sensing bridges as the position
of tie proof mass changes. The total electromagnetic energy stored in the r, sensing
circuit is, from Fig. 2.8,

1 1
E = §ng;1'2+§Lyu(l+10cosw,,t)2+%LTZI(I—:',‘)?

e
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1 . 1 :
+ ELy;f(I + Ipcoswy t — 1,.2)2 + § (LSQ + SLS)lz,' (2.137)

This is not the correct potential energy of the sensing circuit, however. As the
proof mass moves, the current source attached to the sensing circuit must maintain a
current Ipcosw;t. This forces the current source to supply encrgy. The voltage induced
across the current source is the time rate of change of the magnetic flux across the bridge:

d

V=—
dt

¢ = dit[Ly”(I + Ipcoswr,t) + Lyzz(I + Iycosw,_t — ¢,_)]. (2.138)

The power supplied by the current source at any instance of time is the product of the

voltage drop and the supplied current, i.e.,
d :
P=1I cosw,xla [Lyzo(I + Igcosw,,t) + Lyzz(I + Igcoswy, t —t,,)]. (2.139)

If we now displace the proof mass a small distance éx away from equilibrium, then
we can compute the force in the z direction, f;. The energy we have received in this
displacement is f éz. The change in the total electromagnetic energy stored in the

sensing circuit is (dE/dz)éz, and the amount of work done by the current supply is

We = / Pd
d .
= /Ig cosw,rta (Lyze(I + Tocoswyt) + Lyzz(I + I cosw, t — i, )] dt
d ) dz
= /Io cosu,,td— [Lyze(I + Iocoswr,t) + Lyzz(1 + Ipcosw, t ~ iy )] Edt
T

d
Iy cosw,xta [(Lyze(I+ Ipcoswy, t) + Lyzz(I + Iy cosw, t — i, )] 6z. (2.140)

Thus conservation of total energy demands that

d
We = fﬁz + fréz. (2.141)

Substituting in Eq. (2.140) for W¢ and solving for f,, we find

d
fr= ~2 {E - Iycoswy t [Ly,o(I + locoswr t) + Lyzz(I + Ipcosw, t —ir.)]}.
(2.142)

Thus we see that the proper potential energy of the sensing circuit is

Vi, = E = Igcoswy t[Ly,z(I + Igcoswy,t) + Lyzz(I + lgcosw, t —1,,)]. (2.143)
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Combining like terms and simplifying, we find

1 1
Vee 2 (LVzE + Lyes + Lizz + Lyzz) I’ - i(Lyzr + Lyﬁ)]g cos? Wryt
1 . .
+ 5 (Lgze + Lyzz + Lsq + 5Ls) i, ~ (Lgzz + Lysz) Iy, (2.144)
Sclving Eqs. (2.128) znd (2.120) for I, substituting 1, i,_, and Lgs. \4-1is),

(2.108), (2.110), and (2.115) for L3:3, Ly2z, Lyzz, and Lyzz, respectively, into the above
equation, we find, after expanding to second order in » and 6,

1 A% vs
V.. = -I?(1 . - — s 15,2
. 4Io( +cos2w,t)[ Ls+(qu+6Ls+ 2)1‘I

+ ( 21;2) b+ % (Asds +ctys + Bs) (62 + 93)} : (2.145)

This shows the relationship between the square of the sensing current and the “stiffness”
of the accelerometer. The sensing current oscillates at a high frequency, well above
the resonance frequencies of the accelerometer, and it is an excellent approximation in
practice to ignore the time varying portion of the potential.

Similar analysis of the ry, r,, 6., 6y, and @, gives

1 A2 vs
ny = Zlg(l + cos2w,yt) [-—Ls + (m + —2—) 1‘3

+ (C;‘/SS') 0 + % (Asds + ¢t s + ﬂs) (0§ + 03)} , (2.146)

I A% Is\ -
Vi, = 410(1+COS2%')[_Ls+(qu+6Ls+2 r?

; ("Zf) 02+ 1 (Asds + ctys + ) (62 + og)] , (2.147)

cZA?
Vo. = —10(1+COS2(4)9, [L (LSQi\GLS)eg
2A2 1
2
*( )i

2A2
Y 2
Vs, = I o(1 4 cos 2wy, t )[ Ls (L5Q+6LS> g,

Asds + c*ys + ﬁs) (0‘ + 93) + 72—51”2] . {2.148)

2A2 62 1 2 2 REI
+( ) ,+§(A5ds+c 75 + Bs) (62 +0,)+—5—rx . (2.149)

2A2
Vo, = 131 t 2
b IO( + cos 2wy, t) | ~Ls (LSQ T 6L5> o
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CzA% 2 1 2 2 2 7S 2
+( T )0,+ 5 (Asd5+c +s +ﬂ5) (9,+oz) + il (2150)

In our analysis up to this point, we have driven all sensing circuits with the same
magnitude of sensing current, Io. It is desirable to separate the effects of the linear and
angular sensing circuits by drivire each with a differe=t mreguitude of oscillating current.
Thus, we will drive all three linear circuits with an oscillating current of magnitude I,,
and all three angular circuits with an oscillating current of magnitude Iy. The total
potential derived from all six sensing circuits, Vg, is then

1 2
Vs = —3(13+13)Ls+—[13[ As

2, ISy ,2 2, .2
+6L +(Ir+10) :'(rr+ry+rz)

Iy A% 1
 Tog +6L3)

(92 + 62 + 62),

1 21\
+Z[(I3+192)< Is +Asds+C7s+%35)

(2.151)

where we have dropped the time dependent portion of the potential.
The complete potential for the SSA is, from Eqs. (2.127) and (2.151),

Vo= Vi+Vs=Vo+2(02 - B)AL(rz + 7y +72)
+ 2(12 - [i Ap(0-(r: = 1y) +0y(rz — 72) + 8:(ry — rz))

2 2 2 L 2 2 2
¥ [1 EL 1 (“L +2):|(r+y+1z)

1 A2
+Zhigfa;+uhdb§k&+%+&

+hﬁ+ﬁmmn+8n+mywﬁc

I J(02+02+02)

s M) (A5 4 hgds + Prs 485 ) + B—D5 | (g2 4 62 4 82)
2 r ] LS sag + 'S S [ L Y 6L T y z
(2.152)
where
b= g-(u[, + L)1 +61% L - %(13 +I})Ls. (2.153)
We can rewrite the potential V', by defining
foc = 2(12 - I2)AyL, (2.154)
A2 s
ks = iS4+ 1HE 155
S [ LQQ+6LS ([,-'+10)2 ’ (2 )
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A? 4A? AL

k= 2 AL | 2 L L .
L 4[1-_LL+I+ (4L Lty /J (2.156)

= 2 2 2 AL P
o= 4 (I++I_)(ALdL+c7L+ﬁb)+I_LL+L (2.157)

1[ 2A ] c?A} 1

s = - M{([74 S 1 Ad LEVS R I RS r2_C¢A0s _ 9 158)
B Ql\' 6'[L5 sdst e J °L5Q+6L5J g

We find, after substituting these expressions into our potential V,

V = W- fDC("'z +ry+ Tz)
— foc [0(r; = 1y) + 0y(ry — 7,) + 0,(ry — 7))
1 1
+ 5 (ke +ks)(rz + 15+ 12) + 5 (T +75)(67 + 65 +67). (2.159)

It is immediately clear how each portion of the potential contributes to the
dynamics of the SSA: k;, and kg are the linear spring constants generated by the lev
itation and sensing circuitry, 77, and s are the angular spring constants generated by
the levitation and sensing circuitry, fpc is the DC force generated by the levitation
circuitry, and fpc is also a measure of the cross coupling between the linear and angular

levitation circuits.

2.4 Six-Axis Accelerometer Transfer Functions

In the last two sections, we have derived the equations of motion for the SSA,
the sensitivity of the sensing circuitry to changes in the position of the proof mass, and the
potential energy of the magnetic springs which levitate the proof mass. In this section, we
will combine all the information in the previous sections and describe the SSA in terms
of transfer functions relating acceleration to displacement and displacement to output
current. This will enable us to describe the fundamental noise of the accelerometer and
the potential sensitivity of the SSA in the next section.

A displacement of the proof mass in the SSA away from equilibrium is echoed
by a current response i, in the input coil of the SQUID amplifier. The six t; nsfer
functions relating the output current of the SSA to the position and orientation of the
proof mass can be derived from Eqs. (2.131) through (2.136). We find:

1y Asg

H., = ==1 b,
R s I, cosw,, Lso +6Ls

(2.160)
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H,. = :—y; = ],cosw,ytiﬁ[,—s, (2.161)
H.,, = ;—i = I,coswrxtrwi:——s—(srs, (2.162)
He,; = i;—: = Igcosug,tﬁ%ll—s, (2.163)
1{gy,' = ;—:- = Igco.swgytz&CATSGTs, (2.164)
Hg,y = %‘ = Igcoswgth—“?:—s(E, (2.165)

where we have dropped all second order terms, and replaced Iy by /I, and Iy in the linear
and angular sensing circuits, respectively.

An acceleration of the SSA is echoed by a displacement of the proof mass. This
displacement of the proof mass is described by the equations of motior. for the SSA,
Eq. (2.69) for the linear degrees of freedom, and Eqs. (2.86), (2.87), and (2.88) for the
angular degrees of freedom. Substituting the potential, V, from Eq. (2.159) into these

equations, we find:

Fptwir, = f—;ﬁ + f%c(ey -0,)+a”, (2.166)

fbutn, = 10 000 g e, (2.167)

o4 wir, = @—C-+f’)—c(9r—9y)+af, (2.168)
m m

T eVr = _I z Ty)+w1 + yUJs ws y +w2 2z . )

0, +wib, = fDTC(rr —r) 4o — g0l — e, + e, (2.170)

0, +wib, = fLIC(ry —r)+ o 000 —WfTh, + M4, (2.171)

where we have dropped the superscript from rF, dropped all second order terms, and

defined

ki + ks
W2 o= SLEES (2.172)
m
W= T“ILTS. (2.173)

The SSA is orientated in the “umbrella™ orientation so that all three axes make
the same angle with the vertical, and the acceleration of gravity is applied equally to

the three axes. With the SSA in the “umbrella” orientation on the surface of the earth,
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levitation currents are stored in the SSA so that

foc _ gE
Lo = 22 2.174
m V3 ( )
This levitation force cancels the DC component of the external acceleration, a®. Fqua-

tions (2.166) through (2.171) can be rewritten:

fitwin = a, (2.175)
éi +w§0,~ = a, (2.176)
where

a; = af+%+ \/_(0 9.), (2.177)
a, = af+7§+——3 6, ~ 8,), (2.178)
a, = +%+~\7_—(0 (2.179)
ar = fi?; —r)+ ot 40— W, +wid,. (2.180)
a, = ‘(i’/;_l(rI —r,) ot — 604 —leO +uwitle,, (2.181)
a, = gpm( — 1)+ o 4004 - wg”ér-{»w;”éy. (2.182)

V3I

Up until this point, we have assumed that no damping o the motion of the
proof mass occurs. In reality, the superconducting circuitry and the e.._ >rimental support
structure force the @ of the modes in the SSA to be finite. The damping of the proof mass
in the linear degrees of freedom can be modeled by the addition of a velocity dependent
force, rw,/Q, to the equations of motion for the SSA, where Q. is the quality of the
linear resonance. The damping of the proof mass in the angular degrees of freedom can be
similarly modeled by the addition of a velocity dependent force, ng/Qg to the angular
equations of motion for the SSA, where @y is the quality of the angular resonances.

Adding these additional terms to Egs. (2.175) and (2.176), we find

Py Yra L2 5 1q-

Fod olh Wi = an (2.183)
(98

b+ 226, + w20, = a (2.184)
Qo

These equations of motion can be written in the frequency domain by defining

ri(t) = ri(w)e™, (2.185)




ai(t) = ai(w )Cth,

6i(t) = Bi(w)e™,

ai(t) = ag(w)ei‘“t.

(2.186)
(2.187)
(2.1%8)

Snbstitutine these definitions into our equations of motion, and solviug for the ratios,

ri(w)/ai(w) and 8;(w)/ai(w), we find

The transfer functions relating acceleration to displacement, Egs. (2.189) through {2.194).

g ) 1
T ap(w) w4 ww/Q, - w?
) N —
ay(w) w?+iww/Q, - w?

0. = re(w) _ 1
T a(w) Wt iww/Qr - Wb
Hap, = 2 1 .
o or(w) Wi+ iwew/Qg — w?
He, = ) _ 1 .
%y ay(w) w}; + iU)gw/Qg — w?

Ha = 0.(w) 1

a,(w)  wi+tiwew/Qg — w?

(2.189)

(2.190)

(2.191)

(2.192)

(2.193)

(2.194)

and displacement to output current, Eqs. (2.160) through (2.165), can be combined to

define the transfer functions relating acceleration to output current:

143
44t

lz(w) AS 1

= Ic el - R
ar(w) COSWrs LSQ +6Ls w? + zwrw/Q, — w?
iy(w) As 1
D = cosun, , ,
ay(w) ostry Lsg +6Lsw? + tw,w/Q, — w?
iz(“)) As |
= I, cosw, ! i ,
a:(w) cosiers Lsg +6Lsw? +iw,w0/Q, — w?
) (U) cAs 1
= =1 t ,
QI(W) Ocoswer LSQ + 6LS wg + IWBW‘/QO _ UJ2
z'(Qy(“‘)) I we t cAg 1
—_—Y = €08 4 R
ay(w) ’ b Lsg 4 6Lsw? + twsw/Qg — w?
i@,(w) cAs 1

= I4c0: t .
aw) ¢ id Lsg +6Lsw) + wpw/Qg — w?

2.5 Fundamental Noise of the Accelerometer

(2.195)

(2.196)

(2.197)

(2.198)

(2.199)

(2.200)

The fundamental noise of the SSA can be described in terms of the equivalent

acceleration noise, a

N

and o, applied to the proof mass. This equivalent input accelera-
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tion noise is generated by two separate processes in the SSA. The first, Brownian motion
noise, actually generates acceleration noise in the form of thermodynamic fluctuations.
The second, SQUID amplifier noise, adds noise to the measured signal, which is reflected
in the output as an equivalent input acceleration.

Since the processes in the SSA are stationary, we can equate the auto correlation

-

Ror (1) = (z(t)z*(t + 7)) (2.201;

of a signal from the SSA, z(t), to a time average:
1 [T .
Rer(7) = Tlgx;o 5T z(t)z*(t + 7)dt. (2.202)
The Wiener-Khintchine theorem [14,15] allows us, in turn, to relate this to the power

spectrum density:

S2(w) " Ree(r)emdr, (2.203)

Rz (T)

i

—1-/°° Sr(w)e™  dw. (2.204)
27 J-x

2.5.1 Transducer Brownian Motion Noise

The Brownian motion of the SSA at a temperature T appears at the proof
mass as three linear and three angular noise terms, aiT(w) and a,-T(u;). respectively. By
applying a,T(w) and a’ (w) to the transfer functions relating the position and orientation
of the SSA to acceleration, Eqs. (2.189) through (2.194), we can relate the position and
orientation of the SSA to the Brownian motion noise. This will allow us to compute
the average potential energy of cach mode, and in turn, by applying the equipartition
theorem, compute the spectral density of the Brownian noise.

The transfer functions relating the position of the SSA to the applied Brownian

motion noise are, from Eqs. (2.189) through (2.194).

al (w) o

) W+ iww, [Q, ~ w?’ (2.205)
T

Sulw) ol (2.206)

wi + iwwy[Qg — w*’

The thermal energy in each of the linear modes of the SSA can now be computed:

kgT = rrw3<r?(t)>




A7
= mw?R,, (0
= — S (
mw'?rr,/
ST( )
= n1w2—/ —5 (2.207)
2 oo |2 ¥ w0 Qs —

where kp is Boltzmann’s constant and we have used the fact, from Eqs. (2.205), (2.202).

and (2.203), that

Syr(w)
Sy (w) = - _— (2.208)
[w? + iww, /Q, - Wi
Since the thermal fluctuations are white in character, S, r(w) is a constant, and we can

perform the integral immediately. We find

kyT = '"Q’Sar, (2.209)
2w, &
or
2kgTw,
S =2 (2.210)
mQ,

This equation is the mechanical analog of the Nyquist equation. The power spectral
density for each of the angular modes of the SSA can similarly be computed:

2kBTw‘g

S r=
()IT [QB

(2.211)

2.5.2 SQUID Amplifier Noise

A noise model of the rf SQUID can be found in [6.7]. In this model, the
optimum source impedance is much smaller than the input impedance wlgg. Because
of this impedance mismatch, the noise of the SQUID is dominated by current noise,

S1(w), and can be characterized by an “input energy sensitivity™

1
Eg(w) = ELSQSI(“))' (2.212)

2.5.3 Potential Sensitivity

The output of the SSA is modulated by the applied carrier requency in each of
the six degrees of freedom and each of these signals must be separately demodulated by a
lock-in amplifier. This process is represented schematically in Fig. 2.9, for the r, degree

of freedom. In order to fully understand how each fundamental noise source contributes
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az(w) T Tiw [a=F SQUID LP v, (w)

coswr, t

As
Irm COs w,,t

Figure 2.9. A schematic illustrating detection of acceleration in the SSA:
r; degree of freedom.

to the total noise of the SSA, we will travel through each stage of the process for the r,
degree of freedom.

Any acceleration signal, a.(?), that Arives the the SSA must compete with the
Brownian motion, af(t). Thus the combined power spectral density which appears at

the input to the block diagram in Fig. 2.9 is
Sas(w) + S, (2.213)

This spectral density is translated by the frequency response of the SSA into a displace-

ment spectral density:
Sa (@) + 5,7

"t iww /Q, —

This signal is modulated and appears at the input to the SQUID amplifier. Modulation

Sr (w) (2.214)

of the r; signal, Eq. (2.160), relates the spectral density, S;.. at the input to the SQUID.

to the spectral density S5, :

.1 LAg
) =g (m

Combining this with Eq. (2.214), we find

2 . y
1 I,-.'\S ba,(“" - "‘"TI ) + ‘Saz
s = i) | EE—

) [Sr (@ —w,) + Seplw + wr, )] (2.215)

4 Lsg +6Ls W=, e [Qr = (= oy )2
L Sa(w+wr, )+ Saz‘
|W3 +i(w +wr, )‘“’r/Qr — (w + Wy, )2|2

where we have added the input noise spectral density from the SQUID amplifier. S;.

+ 5. (2.216)

This signal is then amplified by the SQUID and demodulated. The power

spectral density, just before the low pass filter in Fig. 2.9, is

[aW]
£
—
-1
—

Serlw) = =G2S (w—wr )+ St + w0, 0] (2.,
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where G is the gain of the SQUID in V/A. Substituting Eq. (2.216), we find
2
1 2 SG: - 2 rr + Sa
va(w) = "G‘ 251 + 1 ITAS K (w nd ) : 2
4 4 \Lsqg +6Ls w2 + {(w ~ 2w, Y, [Qr — (W = 2w, )?
SQI(W+2LU,-,)+SQI ‘S'a:(w)+SaI :l}

= +4 -
lw? + i(w + 2w, Jwr /Qr — (W + 2wr, )212 Jw? + ww, [Qr - w?
(2.218)

Note that a 4, not a 2, appears in front of the last term inside the brackets, because
the signals are adding coherently. Since the resonances of the SSA are of a much lower
frequency than w,_, the first two terms within the brackets on the right hand side of Eq.
(2.218) can be neglected, and the final output spectral density is

2
1 LAs 502 () + %
6 o= torlos o ! : 2.219
(w) 4 { I <LSQ + 6LS) [|w,2 + ww, [Q, — w2|2 ( |

If we represent the SQUID amplifier noise as an equivalent acceleration noise,

aS®, acting on the proof mass, then Eq. (2.219) can be rewritten:

2
S sq(w)+ Sa, (w) + S, ‘
Su.(w) = 1 TrAs il ) ) ;T , (2.220)
4~ \Lsq+6Ls |w? + tww, [Qr — WP
where ,
S sqlw) =2 (LS—C;_X—(;E> w? 4 iww, [Q, - w212 Sr. (2.221)
o riA§

Thus the minimum detectable acceleration spectral density is, from Eq. (2.220),

Sar(w) 2 S;se(w)+ Sor
Lsq + 6Ls)2 2, 212 Es  2kpTw,
> _— .- , (2.2
> 4 ( TAs wr +iww, [Qr —w ‘ Tsg + m0, (2.222)

where we have substituted Eqgs. (2.221), (2.210}, and (2.212).

The power spectral density extends over both positive and negative frequencies,
and in order to compute the noise power, Py, in any frequency band, 2, we must include
both the negative and positive frequencies. Thus, it is convenient to define a one sided

power spectral density, P(w):
Pw) = [S{w) + S(-w)], (2.223)
and the power in a frequency band, §2, is

Py = /ﬂ P(27 f)d]. (2.224)




The minimum detectable acceleration spectral density, S,,(w), is then equivalent to

Lsq +6Ls\? . 2 Es  4kgTw, i
P, (w)=8 (_§%A5_S> w? + tww, [Q, — WP LsSQ + 7:Qr . (2.225)
For frequencies much less than the resonances of the SSA, this simplifies to
Lsg + 6Ls)2 4 Es 4kgTw,
P,_ =8 . 2.226
=8 (95) Isq  m@, (2:220)
This can be written in terms of an energy coupling coefficient, 3,:
Lsgi?
@s<53», (2.227)
mwlr? [

where ( ), denotes a time average over one period of the carrier frequency w,,. Substi-

tuting Eq. (2.160) into our expression for 8,, we find

2
1 I.Ag Lso
. = = . 2.228
s 2 (LSQ + 6L5> mw? ( )

Substituting this into the expression for the minimum detectable acceleration spectral

density, Eq. (2.226), gives

dw, (kT w,Es)
P, = .
oom (Qr * B,

Comparing this to the minimum expression for the noise in the gravity gradiometer, it

(2.229)

is seen that the noise from the SQUID contributes twice. This is a consequence of the
demodulation which folds the two separate sidebands of the modulated signal upon each
other, so that the noise in each sideband is added together. If we had used six separate
SQUIDs in a more traditional DC detection scheme, we would not have suffered this
penalty, but we would have lost all the benefits gained from: modulation.

The coupling coefficient, 8, can be rewritten in a more compact form. If we

LRy

remove the direct dependence on I, and w,, by substituting Eqs. (2.155) and (2.172) into

Eq. (2.228), we find
Lsq ( ks ) ‘
3. = ——". . 2.230
"7 Tsq +6Ls \kL + kg (2:230)

Thus we see that 3, can vary between 0 and 1/(1 +6Ls/Lsg). If Brownian noise in the

SSA is dominated by SQUID noise, P,, is minimized when ks = k., or

1 Lsq
= 2.231
g 2Lsq+6Ls ( )
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This optimal coupling could be improved by inserting a superconducting transformer
between the bridge circuitry and the SQUID. This would match Lsg +6Ls to Lsg, and
B- optimal would be 1/2.

A similar analysis of the two other linear degrees of freedom gives

dw, (kT w.FEs
Pay =P, = m (—@- + A, ) . (2.232)
Likewise, analysis of the three angular degrees of freedom gives
dwy (kT (.JgEs)
= = = — |\ —= 2.
Py, = Py = P, 7 ( 0s + 5 ) (2.233)

where

. 2
LSng 1 IgcAs Lsq
= =) == . 2.234
pe <1wge2 . 2\Lsg+6Ls) 12 (2234)

T
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Chapter 3

Construction of the
Superconducting Six-Axis

Accelerometer

In the previous chapter we discussed the theory of the SSA. In this chapter we
will describe the actual realization of this theory in a concrete design. In the first section,
we will describe the main mechanical components that comprise the SSA: the proof mass,
coil forms, coil form holders, precision mounting cube, transformers, and superconducting
coils. In the second section, we will describe the superconducting circuitry. In the third
section, we will examine the design of the cryostat and the suspension hardware that
supports the SSA in the cryostat. In the fovrth and final section, we describe the

computer system, data acquisition, and interface electronics used to control the SSA.

3.1 Accelerometer Hardware

3.1.1 Mechanical Components

The primary hardware that makes up the SSA, consists of four main compo-
nents: the proof mass, the titanium coil forms which hold the superconducting coils in
close proximity to the proof mass, the coil form holders which align the coil forms, and
a precision mounting cube which holds the coil form holders. An exploded view of the

SSA is shown in Fig. 3.1.
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The proof mass for the SSA is constructed from pure niobium (Nb). It consists
of four separate plates which fit tightly together to form the final proof mass. An
exploded view of this is shown in Fig. 3.2. The machining of the proof mass proceeded
in four steps. In the first stage the four pieces were cut from a Nb plate. Each picce
was left slightly oversized in order to maintain the precision of the final proof mass. The
pieces were then heat treated in a high vacuum oven at 1800°C for 4 hours. Next all
dimensions except the slots were finished using a computer controlled milling machine.
The slots were then finished using an electron discharge machine (EDM). The pieces
were then polished flat to a final thickness of 2.39 mm and assembled into the final proof
mass. A small amount of GE 7031 varnish (General Electric Co., Schenectady, New
York) was used to lock the pieces in place. The final dimensions of the proof mass are
2.784 cm on a side. The proof mass is orthogonal and flat to a part in 103.

The proof mass is surrounded by eight titanium alloy cubes which hold the
superconducting coils in close proximity to the proof mass. Each of the eight cubes has
three surfaces which face the proof mass, and three surfaces which do not. Each of the
surfaces which face away from the proof mass has a recessed pocket in which small strain
relief clamps are mounted. These clamps protect the superconducting wires that connect
to the superconducting coils. Each of the surfaces which face the proof mass has two
flat circular regions which contain one levitation coil and one sensing coil, respectively.
An isometric drawing of a coi! form is shown in Fig. 3.3. Titanium was chosen as the
material for the coil forms because of its strength and machinability. It was also felt
that a conducting coil form would decrease the susceptibility of the superconducting
circuitry to rf noise, since eddy current losses add an additional loss mechanism at high
frequencies.

The coil forms are held in place by a set of six cylindrical Nb coil form holders
which mount inside a precision 10.16 cm titanium cube. These six coil form holders
mesh together inside the titanium cube in such a way as to form a smaller hollow Nb
cube inside the titanium cube. The eight coil forms are mounted on the inside of this
hollow Nb cube. Each coil form is attached to three of the six Nb coil form holders.
This is possible since the six coil form holders form the six sides of the hollow Nb cube.
and each coil form rests in one of the eight corners. Each of the recessed pockets in the
coil forms is matched by a corresponding hole in the coil form holder. Wiring from the

superconducting coils on the coil forms is routed through these holes to the large circular
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s

Figure 3.2. An exploded view of the SSA proofmass.

Figure 3.3. A schematic drawing of one of the coil forms in the SSA.
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Figure 3.4. An isometric view of the six coil form holders.

porvets in the coil form hoiders. All the superconducting joints in the SSA are mounted
in these large circular pockets. Small holes allow the superconducting wires to be routed

from one pocket to another.

The cylindrical pocket at the center of each coil form holder is used to house a
feedback transformer. An isometric view of the six Nb coil form holders, as they would

appear inside the precision mounting cube, is shown in Fig. 3.4.

The precision titanium cube which houses the SSA is shown in Fig. 3.5. Its
surfaces are flat and mutually orthogonal to better than 2 parts in 10°. Each of the six
surfaces on the mounting cube contains a tapped bolt circle (not shown) which match
the clearance noles in the accelerometers which make up the superconducting gravity
gradiometer. Presently these bolt circles are used to mount Nb covers over the pockets
of circuitry in the SSA. but when the SSA is integrated with the gravity gradiometer,
these covers will be replaced by the six accelerometers that make up the superconducting

gravity gradiometer.
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O

(-

Figure 3.5. An isometric view of the precision mounting cube.

Each corner of the mounting cube has been cut perpendicular to a line passing
through opposiie vertices of the cube. One of these corners is used to mount the SSA
in the cryostat on the suspension structure. Current and control leads enter the SSA

through the other seven corners.

3.1.2 Superconducting Coils

Each surface of the coil form facing the proof mass contains two coiicentric
superconducting coils. The outer coil is used to provide levitation and feedback to
the proof mass. The inner coil is used to sense the position of the proof mass. Each
coil is a spiral pancake coil wound from 76 pm diameter niobium-titanium (Nb-Ti)
superconducting wire. Originally we constructed the coils in the SSA using pure Nb
wire, but recent changes in the manufacturing process for pure Nb wire created reliability
problems which we are¢ irrently attempting to understand. Since the SSA is constructed
from 48 superconducting coils, even a small failure rate is unacceptable and we switched

to tougher Nb-Ti wire. A small amount of flux creep has been observed in Nb Ti coils




[9] and this introduces additional noise into any superconducting circuitry containing
Nb-Ti coils. This is not yet a {actor in the SSA since our noise is still dominated by
seismic disturbances in the laboratory.

The Nb-Ti wire is insulated with ML insulation and has an overall diameter
of 100 um. Before the Nb-Ti wire is wound on the titanium coil form, the surface is
carefully sanded and cleaned of all dirt and oil. The outer most coil is wound by placing
a clear highly polished Plexiglas backing plate on top of the coil form. This backing
plate rests on top of the surface of the inner coil and is held in place with a bolt during
the winding process. There exists a small (200 um) step between the outer and inner
coil. This small step prevents the backing plate from making contact with the outer
coil winding su-face, and leaves room for a two layer spiral coil. A thin layer of vacuum
grease is applied to the surface of the inner coil to prevent epoxy from bonding to the
surface of the inner coil during the winding of the outer coil. A small radial groove from
the center of the coil form to the outside allows the insertion of two small hollow Teflon
tubes. The first tube runs from the center of the inner coil outwards and allows us to
wind the inner coil after the outer coil is finished. The second tube guides the start of
tue N5 Ti wire used in the outer coil. Winding starts from the center of the outer coil
and ends after a counted number of turns. A transparent, low viscosity, epoxy, TRA-
CAST BB3002 (TRA-CON, Inc.. Medford, Massachusetts) is used to bond the Nb-Ti
wire to the coil form. After the epoxy is set, the center bolt is removed and the backing
plate is machined off, leaving a flat spiral coil consisting of two layers. The coil winding
procedure uscd here is a modification of that aescribed in [10,2].

After the outer coil is finished and inspected, the inner coil is wound. A hollow
titanium pin with a small step (100 um) is inserted into the center hole of the coil form.
The small step prevents epoxy from running down the central hole. A small amount of
vacuum grease is applied to the pin to prevent a bond from forming between the pin and
the epoxy. A second clear Plexiglas backing plate with a center hole of diameter equal
to the titanium pin is mounted on the pin. Careful adjustment of the spacing between
the backing plate and the surface of the coil form matches this gap to the diameter of
the Nb-Ti wire. A small bolt inserted through the hollow titanium pin is used to hold
this spacing constant. Winding proceeds irom the center of the inner coil and ends after
a counted number of turns. After the epoxy is set, the center pin is removed and the

backing plate is machined off, leaving a flat spiral coil consisting of a single layer.




39

FEach of the pairs of Nb-Ti wire from the two coils is then inserted in color coded
Teflon tubes. Each Teflon tube is anchored to a small stress relieving clamp mounted on
the adjoining surface of the coil form that faces away from the proof mass surface.

After all parts are cleaned and inspected, the complete SSA is assembled. A
photograph of the assembly is shown in Fig. 3.6. The large number of leads from the

superconducting coils can be clearly seen.

3.2 Superconducting Circuitry

The superconducting joints used in the SSA are formed by spot welding two
or more Nb—Ti wires to Nb-Ti foil. Each small section of foil has two or more small
sections of Teflon tubing mounted at one end. These tubes keep the wire from bending
at the spot weld and provide strain relief. Before the spot weld is formed, each wire
is crushed flat to approximately half its original diameter. This increases the surface
area of the wire in contact with the foil. Both the Nb-Ti wires and the Nb-Ti foil are
polished in a diluted chemical solution of equal parts 85% H3PO4, 70% HNOQO3, and 49%
HF, and cleaned with distilled water to remove any residual acid. The upper and lower
electrodes used in the spot welder are made of beryllium copper. The upper electrode
makes contact with the flattened wire and is rectangular in shape, approximately 1 mm
by 5 mm. The lower electrode is cylindrical in shape, approximately 5 mm in diameter.
The contact pressure and energy settings of the spot welder are adjusted so that a test
specimen, when viewed under a microscope, shows a clear fusion of the wire and the foil
with little or no evaporation of material. Superconducting joints formed in this manner
consistently have critical currents in excess of 8 A through many thermal cycles.

The superconducting feedback transformers used in the SSA are cylindrical in
shape, with a 75 um thick layer of brass separating the primary and the secondary. This
thin brass layer forms a barrier to high frequency interference, and allows a direct con-
nection of the feedback electronics to the SSA. Six feedback transformers are employed
in all. These are mounted inside the cylindrical cavities in the six Nb coil form holders.

Six additional tun~d transformers are used to connect the six inductance bridges
to their room temperature oscillators. Each transformer steps up the current supplied
by the room temperature oscillator by a factor of six. These transformers are cylindrical

in shape and enclosed in 2.54 ¢m diameter Nb tubing. A thin brass layer separates the
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primary and the secondary, and forms a barrier to high frequency interference. This is
extremely important since the secondary of each transformer is attached directly to the
sensing circuitry, and very low levels of rf interference will cause the SQUID control loop
to unlock. Each transformer has a polystyrene capacitor attached acr~ss the primary.
This allows the transformer to resonate at a particular frequency, forming an additional
noise filter for frequencies other than the resonance frequency, and providing additional
current gain at that frequency. The effectiveness of this scheme is demonstrated by the
ability of the SQUID to stay locked. Each of these transformers is mounted on the
underside of the top of the vacuum can which houses the SSA.

Shielded heat switches are made from tiny 1/8 W, 500 Q carbon resistors.
These are specially selected carbon resistors whose resistance increases dramatically as
they approach liquid helium temperatures. This provides passive feedback when the
heat switch is driven by a current source. Each resistor is insulated and surrounded
by a very thin layer of lead foil. This is then soldered to a lead tubing which contains
the leads that attach to the resistor. This shielding prevents tf frcquenc, {cm entering
the c:perconducting circuitry through the leads connected to the heat switch. A Nb-Ti
wice is then folded in half and wound noninductively around the lead shielded resistor.
This wire is held in place with a small amount of GE 7031 varnish. The completed heat
switch is attached to a small copper block that contains a round copper post that is
tinned with solder. The Nb-Ti wire is then wound several times around this post and
held in place with additional GE 7031 varnish. The copper post serves as a heat sink
and insures that the only portion of the superconducting circuitry that is warmed above
the transition temperature is the Nb—Ti wire directly in contact with the heat switch.
These shielded heat switches are then mounted inside the large circular pockets in the

Nb coil form holders. In all, sixteen heat switches are used in the SSA.

3.2.1 Levitation Circuitry

The levitation circuits used in the SSA to support and control the z linear and
angular degrees of freedom are shown in Fig. 3.7, wiere all heat switches, superconduct-
ing joints, and current leads are shown explicitlv. The y and = degrees of freedom have
identical (in form) levitation circuits. Each of the superconducting joints is represented

by a black dot. Fach heat switch is shown schematically as a resistor in close proximity
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to a superconducting lead. Each heat switch has associated with it a pair of current
leads which are used to store persistent currents in the circuitry.

All current leads in the SSA are constructed with 125 um Cu clad Nb--Ti
wire. The copper cladding reduces the risk of driving the current supply leads normal,
and provides additional heat capacity that protects the leads. A programmable current
supply, controllable though the GPIB interface, is used to supply external current to these
current leads. If any portion of the superconducting circuit is driven normal while storing
currents, the external current supply would damage the superconducting circuitry. In
order to prevent this, an automatic protection circuit monitors the voltage across the
current supply leads. Any voltage signal which exceeds a preset voltage threshold triggers
a current shunt.

The r- levitation-feedback circuit is less complex that the 8, levitation-feedback
circuit. Only a single heat switch, hsl. is used 1o disrupt the superconducting loop. The
storage of a persistent current in the superconducting loop proceeds in several steps.
Initially there is no current stored in the loop. The external current leads, I, are then
driven with a steady current of 0.5 A. At this point, all the current from the external
current supply driving I; is passing through the heat switch. hsl is then pulsed on for
approximately 40 msec. This drives the short path between the two superconducting
joints normal and forces the current to flow through the four inductors which levitate
the proof mass in the 7, direction. Approximately 10 msec after the current driving
the heat switch is removed, the heat switch becomes superconducting once again. This
traps the current in the r, levitation-feedback loop. This process is repeated at higher
and higher current settings until the desired amount of fiux is trapped in the r; circuit.
The bridge is carefully balanced in an iterative process which is described in the next
chapter.

The 8, levitation-feedback circuit contains two heat switches, hs2 and hs3. and
two pairs of current supply leads, I, and [3. Initially, current is stored about ithe outer
loop of the circuit. This is done by pulsing hs2 aud hs3 on while supplyving current to [,
This traps flux in the circuit so that I, = s, = l,e,. This provides an even downward
pressure on the proof mass in the —z direction. If a current is now supplied through I3
and hs3 is pulsed on, the current trapped in each side of the circuit will be such that
L, = Iy — I3/2, and Iy, = I, + I3/2. This imbalance in current applies a torque about

the 8, axis of the proof mass. In practice, [ is used to apply a small torgne to the procf
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Figure 3.7. A schematic of the levitation circuitry.

63




64

mass which balances the 8, sensing bridge.

3.2.2 Sensing Circuitry

The sensing circuit used in the S5A is shown in Fig. 3.8, where all heat switches,
superconducting joints, and current leads are shown explicitly.

The six heat switches, hs4-hs9, are used to discharge any flux that may be
trapped in the six sensing bridges. The seventh heat switch, hs10, is used to discharge
any flux that may be trapped in the superconducting loop containing the SQUID input
coil. This heat switch also serves to protect the SQUID from any input current spikes
that may be induced in the sensing circuitry while currents are being stored in the
levitation circuitry.

All leads from the sensing inductances are of equal length, and both sides of
each sensing bridge are identical up to the small inductance added by each heat switch.
This symmetry is important as the additional leads in the sensing circuitry generate
stray inductance which can imbalance the sensing bridge. Any imbalance forces us to
displace the proof mass away from equilibrium in order to rebalance the sensing bridge.
Presently the heat switches in the SSA sensing circuit only lie on one side of each bridge.
It is possible to construct an eight wire heat switch which would present a symmetrical
set of stray inductances to the sensing bridge, but the present choice was made for its
simplicity.

The six current leads, I4-Ig, are driven by six room temperature oscillators. A
polystyrene capacitor is connected across the primary of each transformer to form a tank
circuit. The tank circuit strongly attenuates noisc above its resonance frequency and,
when driven on resonance, increases the driving current through the inductance bridge.
The capacitors are selected so that each tank circuit resonates at a separate frequency
with the lowest at a frequency of 500 Hz, and the highest at a frequency of 2500 Hz.
The resonant frequencies lie equally spaced throughout this band.

The output of the SQUID amplifier (Model 2000, Quantum Design. Inc., San
Diego, CA) is high-pass filtered, and fed into six separate lock-in amplifiers (Model
3961B, Ithaco, Inc., Ithaca, NY). Each lock-in amplifier is tuned to one of the six carrier
frequencies and one of the six separately modulated signals is demodulated and recovered

at the output of the lock-in.




Figure 3.8. A schematic of the sensing circuitry.
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3.3 Construction of the Experimental Test Apparatus

In this section, we describe the experimental test apparatus which houses the
SSA: the thermal and mechanical design of the cryostat, the electrical isolation of the
control leads, the vibration isolation of the SSA, and the room temperature shaker used

to perform the calibration of the SSA.

3.3.1 Thermal and Mechanical Design of the Cryostat

The SSA is operated in a very quiet cryogenic vacuum space. A low boil-off
super-insulated liquid He dewar (William G. Goree, Inc., Los Altos, California) was
constructed with a careful design. The dewar has an inner diameter of 61 cm and an
inner depth of 1.8 m. This large cryogenic space is carefully shieided. The inner jacket
of the dewar is constructed from thin aluminum and Fiberglas. The upper section of
the jacket is made of thin Fiberglas which has a low thermal conductivity to mechanical
strength ratio. The lower section is made of aluminum. This combination helps to stiffen
and electrically shield the lower section of the dewar without sacrificing the hold-time
of the dewar. A long hold-time of liquid helium is needed for uninterrupted operation
of the SSA and the SGG. This is also important in reducing the boiling noise from the
liquid helium.

A super-insulated dewar was chosen over a more traditional nitrogen jacketed
dewar in order to remove the noise of the boiling liquid nitrogen. This noise is of
much more significance than the boiling helium since the liquid nitrogen would form the
primary heat sink for the thermal radiation in the laboratory. With the current setup.
no correlation between the activity in the helium bath and the noise in the SSA has been
seen.

The outer jacket of the dewar is constructed from aluminum, and the entire unit
is extremely rigid. This rigidity is important in order to reduce the long term “angular”
drift of the dewar. Electromagnetic disturbances are also an important source of noise
in a sensitive experiment. The cryostat has been carefully designed with this in mind.
In addition to outer and inner layers of aluminum, three additional layers of shielding lie
between the inner and outer jacket of the dewar. Two layers of mu-metal insure that any
external magnetic field from the earth will be almost entirely excluded from the cryogenic

space. A third shield, constructed from a thin layer of lead foil in close contact with the
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inner aluminum jacket of the dewar, forms a superconducting shield which will exclude
any residual electric and magnetic field. The resulting cryogenic space is exceptionally
free of electromagnetic disturbances.

The cryostat insert which fits snugly into the cryogenic space is shown in Fig.
3.9. The top plate of the insert bolts to the top of the cryostat and a large rubber
O-ring seals the cryogenic space from the laboratory atmosphere. This allows the liquid
nitrogen, which is initially transferred into the dewar to precool the insert, to be pumped
on by an external roughing pump and brought close to its triple point (63.15°K). This
lowers the temperature of the insert and makes for a more efficient transfer of helium.

The large aluminum vacuum can at the base of the insert is anodized and coated
internally with a thin layer of lead. This lead is evaporated onto the inner surface of the
vacuum can by passing a large current though a niobium boat which is filled with lead.
This lead thin film forms a type-I superconducting shield which further reduces magnetic
flux level inside the experimental space. A final coating of Kodak KPR photo-resist is
added to protect the thin coating.

Seven hollow Fiberglas tubes support the vacuum can from the brass plate at
the top of the insert. Six of these tubes are equally spaced in a ring near the edge of the
vacuum can and the seventh lies at the center. Each end of the hollow Fiberglas tubes is
fitted to an aluminum fixture which is used to bolt the tubes in place. These aluminum
fixtures are vacuum sealed with a thin layer of Armstrong A12 epoxy (Lunar Products,
Inc., Fullerton, California), which matches the thermal expansion between the Fiberglas
and the aluminum. These Fiberglas tubes in turn support several radiation shields
constructed from copper coated Fiberglas PC-board material. These radiation shields
provide thermal shielding and mechanically stiffen the insert. The spacing between the
radiation shields is largest just above the vacuum can and decreases towards the top of
the cryostat, where the thermal gradient is greatest.

All the leads that enter the cryostat are vapor cooled and heat sunk to the
liquid helium bath. Two types of leads enter the cryostat: high current leads which
are constructed from copper magnet wire, and low current leads which are constructed
from manganin wire. Copper has a much higher thermal conductivity than manganin.
For this reason, copper was used only for those few leads that must carry high current.
All leads were spirally wound around the Fiberglas support tubes. This increases the

surface area of the wire and allows for greater vapor cooling to take place. In addition,
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the copper leads were heat sunk to the radiation shields.

The dewar is equipped with a helium level gauge (American Magnetics, Inc.,
Oak Ridge, Tennessee), which monitors the level of helium above the top of the vacuum
can. In addition, several carbon resistors with large temperature coefficients are used to
monitor the level of helium or nitrogen in the cryogenic space. A large nitrogen boil-off
heater suspended below the vacuum can is used to boil away the liquid nitrogen prior to
the initial filling with liquid helium. The heater is a thin aluminum plate with thirty 5

W, 1 Q resistors epoxied to its surface and connected in series.

3.3.2 Electrical Isolation of the SSA

A large twelve-sided aluminum box on top of the dewar insert contains filters
for all leads entering the cryogenic space. Each face of the filter box (except one) has
one hermetically sealed forty-one pin connector bolted into it. The one face without a
connector contains the vent line for the dewar. A twelve-sided copper wall fits concen-
tricly inside the box. Each face of the copper wall (except the one with the vent line)
has forty-one coaxial, bushing mounted emi filters (Model 9001-100-1010, Murata-Erie
Corp., Toronto, Ontario) passing through it. These filters are high quality pi filters con-
taining two capacitors and one inductor. Above thirty to forty kHz, each filter reduces
the rf noise by 80 dB. Presently, only five of the eleven connectors are being used. The
remaining six will be used by the SGG when it is integrated with the SSA. The cen-
ter of the filter box is hollow and houses room temperature accelerometers used in the

calibration of the SSA.

In addition to the rf filters at room temperature, there are eleven PC boards
which contain filter capacitors. These are mounted on top of the vacuum can in the
helium space. These capacitors provide additional filtering and help insure that the rf

level of noise in the vacuum space is extremely low.

Each pair of feedback and oscillator leads that connect to the SSA are fed
through a separate hollow Monel tube that extends from the brass plate at the top of
the dewar insert to the top of the vacuum can. In this way the twin-ax leads are shielded

all the way to the top of the vacuum can.




3.3.3 Vibration Isolation of the SSA and Shaker Design

A room temperature shaker, which is free to translate in z, y and 2, and rotate
about the z axis, is used in the calibration and test of the SSA. A cross section of this
shaker is shown in Fig. 3.10. The shaker is mounted on top of the rf filter box on the
cryostat insert. The center mass of the shaker is suspended in vacuum by a spring from
the top of a Plexiglas tower. The center mass of the shaker is machined in the shape of a
cross. A strong rare earth magnet is mounted at the end of each of the four protruding
arms of the cross. Each of these magnets sits between two coils which are mounted to
the outside of the shaker housing. By driving current through these eight coils in the
appropriate combinations, the central mass of the shaker can be driven in three degrees
of freedom: linear in z and y, and angular about the z axis (vertical). One more magnet
mounted above the cross and below the supporting spring is used, along with a set of
matching coils mounted outside the Plexiglas tower, to drive the shaker along the > axis.
The housing of the shaker is constructed entirely of Plexiglas. This simplifies the task
of alignment, and allows us to measure the rotational displacement and calculate the

angular acceleration applied by the shaker to the SSA.

The calibration of acceleration applied to the SSA by the shaker in the lin-
ear degrees of freedom is provided by a set of three room temperature accelerometers
(Sunstrand Data Corp., Redmond, WA) mounted immediately below the shaker mass.
A thin Fiberglas rod is attached to the set of accelerometers and travels down through
the hollow Fiberglas rod at the center of the dewar insert. This Fiberglas rod extends

approximately 12 cm below the top of the vacuum can and is used to support the SSA.

The combined structure which supports the SSA can be modeled as a compound
pendulum which is supported by a spring. The mode structure of this support is in
general quite complicated, but in practice, we are only concerned with the frequency
response well below the resonance modes of the suspension structure. At these low
frequencies, the modes of the suspension structure can be ignored. At higher frequencies,
the suspension can be thought of as a second order low-pass filter. This filtering of high
frequency noise is important in order that the dynamic range of the SSA not be exceeded

and the SQUID unlocked.
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3.4 Computer Control and Interface Electronics

The SSA contains nine pairs of current charging leads, sixteen heat switches,
six pairs of current sensing leads, and six pairs of feedback control leads. Given the
large number and combinations of parameters to control simultaneously, much of the

experimental control had to be automated.

An AT-compatible computer forms the central core of the control system used
with the SSA. This computer is equipped with two four-channel, sixteen-bit data ac-
quisition boards (Model DT2816, Data Translation, Inc., Marlboro, MA) which allow
the simultaneous capture of the six outputs from the SSA. A general purpose GPIB
card (Model GPIB-PCIII, National Instruments Corp., Austin, TX) is used to control a
programmable current supply (Model 2500EP, Valhalla Instruments, San Diego, CA), a
precision DVM (Model 195A. Keithley Instruments, Inc., Cleveland, OH), and six lock-in
amplifiers (Model 3961B, Ithaco Scientific Instruments Inc., Ithaca, NY). A parallel /0
card (Model DT2817, Data Translation, Inc., Marlboro, MA) is used to control custom

cryostat interface electronics.

A custom interface control containing switchable current supplies, high and
low current relays, and two separate instrumentation amplifiers, was constructed by the
Electronics Deveiopment Group at the University of Maryland. This interface box is
controlled manually or by twenty-four optically isolated digital logic lines connected to

the AT-compatible computer.

The front panel of the interface can accept the input from two separate pro-
grammable current supplies. Presently, only one of these is in use, but changes in the
design of the SSA in the future may necessitate the use of two separate supplies. High
current relays are then used to route current to the appropriate charging leads of the
SSA. Low current relays are then used to control which heat switches in the SSA are
pulsed on and off. The amount of current used to drive each of these heat switches is
set manually at the front panel. Two separate instrumentation amplifiers (one for ecach
of the separate programmable current supplies) are used to differentially amplify the
voltage across the current charging leads while current is being stored in the SSA. These
outputs are used to control current protection circuits which shunt current away from

the SSA if a preset voltage level is exceed.




Chapter 4

Test of the Superconducting

Six-Axis Accelerometer

In the previous two chapters we described the theory, design, and construction

of the SSA. In this chapter we will describe the test auu performnance of the SSA.

Initially the proof mass rests on the three lower coil forms and all six inductance
bridges are maximally unbalanced. Our task is to levitate the proof mass and balance
all six bridges simultaneously. If each inductance in the SSA were identical, this task
would be greatly simplified: all levitation currents would be identical aind there would
be no need to adjust the angular orientation of the proof mass. Every attempt has been
made to insure that all of the coils in the SSA are as similar as possible. Despite this,
variations in the diameter of the superconducting wire, errors in the orthogonality of the
windings, and mechanical alignment errors conspire to insure that each coil is unique.
This uniqueness forces all three levitation currents to be slightly different and additional
currents must be stored in each of the angular levitation circuits in order to balance the

three angular sensing circuits.

This balancing process is straightforward, but it must he carried out in an
iterative manner. KEach time one of the currents in the SSA is adjusted in order to
balance onc of the sensing bridges, the position of the proof mass changes. This small
change in position causes the current stored in ecach of the other five levitation circuits
to change. This change shifts the position in those other five degrees of freedom. and

forces us to store new currents in each of those five levitation circuits.
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In addition to the control for the SSA, the interface box contains additional
circuitry to monitor the conditions inside the cryostat. Additional high current relays
control the nitrogen boil-off heater and allow the computer to control the nitrogen boil-off
cycle.

The SSA instrument has been designed to be completely automated. Presently,
all currents in the SSA are stored under computer control, current protection circuitry
can be checked and reset under computer control, and boil-off of the nitrogen in the
dewar is automated.

Each lock-in amplifier contains a precision oscillator which is amplitude and
frequency controllable. These oscillators are used to drive the sensing circuit in the SSA.
Presently, the frequency and amplitude level of each oscillator is set manually and the

complete automation of this is underway.
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This process could go on indefinitely, were it not for the orthcgonal design of
the SSA. Each time one of the sensing bridges in rebalanced, the change in position
along that degree of freedom is much greater than the change in position in the other
five orthogonal directions. In practice, iteration through four or five cycles often brings
us to the point where we are limited by the resolution of the current supply used to store

currents in the SSA.

4.1 Accelerometer Parameters

The experimental parameters for the SSA are summarized in Table 4.1. The
masses of the proof mass and SSA assembly are measured. The moments of inertia are
computed from the mechanical design. The levitation and sensing inductance parameters
are calculated in Section 4.1.1. The inductance of the feedback transformer secondary,
L, was measured, as described in Section 4.1.2, and is an average value typical of the
six feedback transformers. The input inductance of the SQUID, Lsq, is taken {rom the
manufacturer’s data sheet. The remaining three parameters, ¢, dj,, and dg, arc taken

from the mechanical design.

4.1.1 Levitation and Sensing Inductance Modeling

From our knowledge of the geometry of the superconducting coils in the SSA,
we can calculate the parameters which describe the inductance of each of the coils. Each
of the circular windings in the sensing or levitation coil can be thought of as a closed
circular loop containing a current I. This loop creates a corresponding image current
loop in the superconducting proof mass. By calculating the force between all current
loops and image current loops and summing, we can calculate the force on the proof
mass from each coil. This force will be a function of the distance, d, and orientation, 8,
of the coil with respect to the proof mass. The force acting tetween the proof mass and
one of the sensing or levitation coils can be related to the variation in inductance with
position. By compariag these two forces, we can deduce the variation of inductance with
position.

The force between *wo loops carrying equal and opposite currents [, is (8]

_ Mo szf zdl; - dl).‘ ()
1-"312|




Parameter Symbol Value

Mass of the I'ioof Mass: m 0.144 kg
Mass of the SSA Assembly: M 18 kg
Moizent of Inertia, Proof Mass: I 4.0 x 107° kg~
Moment of Inertia, SSA Assembly: Ing 8.2 x 1677 kg w?
Secondary Inductance of Feedback Transformers: L 240 pH
Inductance of SQUID input Coil: Lsq 2.0 uH
Parallel Displacement of Inductance Coil Center

from Proof Mass Center: ¢ 1.35 x 1072 m

Perpendicular Displacement of Inductance Coil Center
from Proof Mass Center

Levitation Coil: dy, 1.69 x 107* m
Sensing Coil: ds 1.51 x 107 % m
Levitation Coil Inductance Parameters:
L 31 pH
AL 6.1 x 1072 H/m
I 1R x 107% H
T 4R H/m?
Sensing Coil Indurtince Parameters:
Ls 1.8 uH
As 52 x 1073 H/m
35 2.1 x 1074 H
g 5.9 H/mq

Tetie £.1. BExpermetal parameters for the SSAL

where dly and dl, are infinitesimal segments of Toops 1 and 20 respectiveiys and xp b
the vector joining those two segments, Our two current loops. one physical of radius Iy
and one image of radius B, are shown in Fig, 1.1, Each loop s situated at a distance
d 4+ r and orientation # with respect to the superconducting plane. Abthongh Fogo01.h
contains force components in the y and = directions, these components mus=t vanish,
Therefore, we need to compute only the o romponent of the forces Fxpanding Fgooo b

through firt order in r and Aoand <omming over all loops in bhoth sipercondusting conls,
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Figure 4.1. A schematic picturc of a current loop above a superconducting
plane interacting with an image current loop below.

we find

ILO zzzf}{ Ry R, cos(d; — 6;)
Ry

[4d2 + R? + R2 — 2Ry Ry cos(6, — 6,)]*

12d? 1
2d 42541 - 18,d6,, (4.2
X( T{ [4d2+1?f+R%—QR,Rgcos(Bz—(},)]J>(1 2 (12)

where we have dropped all terms which vanish due to symmetries in the integrals.

The torque applied to loop 1 by loop 2 is given by the expression

/‘0 sz R x :B;zd::_{_'dlz‘ (1.3)

l$12|

where R, is the vector from the center of loop 1 to the infinitesimal line segment dl;.
An expansion of this expression {or small r and 4. and summation over all loops .. ~ach
coil, gives

T, = - ‘-‘Ble, Y /f cos(By — 0,) cos 8,d8,dd; _
Iu R, [1112 - 11’ +l(’2—213 IRy cos(8; — 6, )]\/

(m (I;.(nsﬁl + Itycosb)y) ,
s { [ F R T RT 2ty Ry eonifs 6y~ reovba g t-
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The forces acting on the proof mass can also be calculated from the variation of induc-

tance, L, with position:

1 ,0L

F, = -I*" = 1.5
5 52 (4.3)
1 ,0L

T, = =I*-=, :

T, 5155 (4.6)

Substituting the expression, Eq.(2.89), for the inductance into these two equations, we
find

F, = %Aﬂ—%yzﬁ, (4.7)
T, = ~%ﬁ012. (4.8)

Setting Eqs. (4.5) and (4.6) equal to Eqs. (4.2) and (4.4), and solving for A, 3, and ~,

we find

Hu Ri1R,cos(8; — 6;)d
A = 722%}4 2 5 3/7d81d02, (4.9)
Ry R [4({2 + Rl + R2 - 2R1 R2 COS(92 - 01 )]

Ko RyR;cos(8, — 6,)
T = T Z E ff’ 2 2 3/2
Ry R, [4d2 + Rl + R2 — 2R1 R2 COS(92 - 91 )]

1242
' — 1} d6,db,, 4.1
g { {44 + R? + R% — 2R, Ry cos(6; — 61)] } . o

g = &ZZ Rfsz’f cos(f; — 61) cos 8,d6,db, -
TR R [4d%2 + R? + R2 — 2R, Ry cos(8; ~ 61)]
6(R, cos 8y + R, cos 92)(12
- $8y 0. 4.11
{ [4(12 + R% + R% - 2R|Rg COS(02 - 9])} R2 contz ( )

The expressions for A and ¥ can be reduced to one-dimensional integrals

- KiR,d cosu
A = 2#022‘% 2 2 121 ‘ 3/2(1u, (4.12)
7 7Y [1d2 + R} + R — 2R\ Ry cos u]
RyRycosu
T = 2#022%{ 172

R, R; 4d? + R? + Rﬁ - 2R R; cos u]:}/z

X 124° 1¥d (4.1
- du. 1
[4([2 + Rf + R% — 2R, R; cos u} ! ‘

and numerically integrated using Romberg's method of order 10 [13].
The expression for /3 is less tractable and must be handled as a two-dimensional
integral. This was implemented mumerically as a one-dimensional integral which per-

forms a series of one-dimensional integrals. These routines were implemented in the ¢
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language, and the calculation of 3 for the levitation coil took in excess of 24 hours of
CPU time on a VAX 8800.

Each sensing coil consists of 30 turns of Nb-Ti wire. The inner and outer -
diameter of each sensing coil is 0.51 cm and 1.22 cm, respectively. Once the proof mass
is levitated, the center of each wire in the sensing coil rests 330 um away liotn the proof
mass surface. Substituting these parameters into our expressions for A, g3, and v, we

find, after numerically integrating,

As = 54x1073H/m, (4.14)
Bs = 2.1x107*H, (4.15)
vs = 591/m? (4.16)

Multiplying As by the sensing coil to proof mass separation, 330 um, gives Ls = 1.8 uH.

Each levitation coil consists of two layers of Nb-Ti wire. Each layer holds 40
turns. The inner and outer diameter of each levitation coil are 1.28 cm and 2.11 cm.
respectively. Once the proof mass is levitated, the centers of the wires which make up
the upper layer in each levitation coil rest at a distance dy = 440 pm away from the
proof mass surface, and the centers of the wires which make up the lower layer rest at
a distance dy = 570 um away from the proof mass surface. Because each levitation coil
consists of two layers, the expressions for A, v, and 3 are slightly more complicated and
the term 4d?, which represents the distance between the physical current and the image
current, must be replaced by 4d?%, 4d2%, and (d, + d2)? as the double summation runs over
the various layers of physical current and image current. Expanding the expressions for
A, 7, and /3 into these three cases, and substituting the geometrical parameters, we find.

after numerically integrating,

AL = 6.1x107%H/m, (4.17)
dr = 1.8x 1073 H. (1.18)
v, = 8 H/m? (1.19)

Multiplying Ay, by the average levitation coil-proof mass separation. (dy + dy)/2. gives
Ly =31 uH.
Each of the expressions for A, 9. and 3 ignores the rearrangement of the current

in each of the superce .ducting wires due the other superconducting wires and image
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currents, and neglects the finite size of the superconducting plane. These are small
errors, and our estimation of the coil parameters ( 8s, As, vs, 8L, AL, and 5. ) should

be correct within ten to twenty percent.

4.1.2 DC Inductance Measurements

By storing a small current in each of the levitation circuits and then allowing
that current which is trapped in the circuit to decay, it is possible to measure the amount
of flux trapped in each of the superconducting loops. Since the amount of flux trapped
in a superconducting loop is the product of the inductance and the current stored, it is
possible to deduce the circuit inductance.

This technique [10] integrates the voltage generated across the heat switch. i.e..

+o0 +00 dl
& = Lyl :/ V(t)dt = -/ Leot —dt, (4.20)

—ec — dt

where Ly, is the total inductance of the superconducting loop. L, for each of the three
linear inductance circuits can be computed from Eqgs. (2.92) thru (2.115) and Fig. 2.5.
We find

Liot,, = Ltot,, = Ltor,, = 4Ly + L. (4.21)

Storing small currents in each of the three linear levitation circuits does not levitate the
proof mass, and Ly, in Eq. (4.21) must be computed nsing the spacing (250 pm) between
the proof mass and the levitation coil when the proof mass is resting on the sensing coil.
We find Ly = Ay 250 pm = 16pH. Experimentally, Lior,, = 330 puH, L,O,ry = 280 pH,
and Lo, = 300 pH. Substituting these values into the above equation, solving for L
and averaging, we find

L = 240 uH. (1.29)

Flux measurements of the three angular levitation circuits are consistent with this result.

4.2 Accelerometer Resonant Modes

The final set of currents stored in the SSA, which balance all six inductance
bridges simultancously, are given in Table 4.2. All three linear levitation currents are
slightly different from eaci cther, as expected. Initially, we attempted to store 0.9 A in

all three angular levitation circuits and we discovered that one of the heat switches in
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From Eqs.(2.118), (2.119), (2.120), (2.124), (2.125), and (2.120), vic capocics

levitation force is

foe,, = (213 - (U, + I4,)| Av, (4.23)
foc., = [212 ~ (1%, + I}y, )] Ag, (4.24)
fDCr, = [212 120 + Ilgz)] AL. (425)

Setting these equations equal to the applied external force, mgg/V3, substituting in our

experimental currents, and solving for Ap, we find

AL = 66x1072H/m (from fpc,_), (4.26)
AL = 69x107*H/m (fromfpc,, ), (4.27)
AL = 68x107*H/m (fromfpc,,). (4.28)

The first of these experimental values is slightly lower than the other two. This can be
understood if we consider the fact that the diameter of the Nb-Ti wire varies slightly
between coils, which changes the density of the windings and modifies A;. The average
experimental value, A;, = 6.8 x 102 H/m, is 11% higher than our theoretical value, but
is reasonable when we take into account the crudeness of our inductance model.

The spring constants for each of the six degrees of freedom can be obtained
from the levitation potentials in Eqs. (2.118), (2.119), (2.120), (2.124), (2.125), and
(2.126). We find

81\2 \ A2 LA2
k, = of—22L 2yl + 13 (I, + Do, )t
: (4LL+L HL) ot 2, + Lo, ) g 4 ooy + ho T
(4.29)
8A'Z A? LA?
ke, = 2 12+ 215, + 1T, ) 72— + (Iaa, + 1o, ———L—,
v (1L +1 +7") o #2000, 4 o ) p =g+ st Do Py T
(4.30)
8A? A2 LA?
k,, = 2|——X% I 4213 + 1% ) ——k— + (I g, )P — il —
. (4LL+L+7L> Tx+ (201+ ]9:)LL+L+(201+ 102) L (L[+L)
(4.31)
Ty, = (A[d[—{»r ‘7/4‘;31)(212 +?]2 + I3, +19 + 135, + Ifs,)
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Parameter Symbol Value
x Levitation Current I, 2.639 A
y Levitation Current I, 2.588 A
z Levitation Current I, 2.435 A
8, Levitation Circuit 1 Current Lg, -0.280 A
0. Levitation Circuit 2 Current I, 0.280 A
6, Levitation Circuit 1 Current L, 0.786 A
0, Levitation Circuit 2 Current I, 1.014 A
0, Levitation Circuit 1 Current Lg, 0.918 A
0, Levitation Circuit 2 Current I29, 0.882 A
x Resonance Frequency fre 21.6 Hz
y Resonance Frequency fry 21.5 Hz
z Resonance Frequency fr. 18.2 Hz
0; Resonance Frequency fo. 14.96 Hz
6, Resonance Frequency fe, 15.15 Hz
8. Resonance Frequency fo, 16.23 Hz
Mechanical Quality Factor for the Linear Degrees of Freedom Q- 220
Mechanical Quality Factor for the Angular Degrees of Freedom Qq 700

Table 4.2. Levitation currents, resonance frequencies, and mechanical
quality factors for each of the six modes of the SSA.

A . y- LA (1:32)
.201 ‘ox L + [/ 20; 191 (LL + 1) .t
To, = (ALdL + ey + ﬂL) (207, + 207, + Iy, + Iy, + I3, + Iy,
cIA? LA%c?
2 [2 1 [ 2_..‘__.]_’___. ‘1” .
+ (20y+ wy)] ; (]ggy Iwy) IL(LI +L) (1.33)
5, = (ALdL + ety + /31,) (217 + 2’& + [229 + I} 19, t I3a, + Is,)
. \2A2 1,.'\ ('
9 12 [2 C 1, I _ [ 2_ 7 L - 4.34
-+ ( 291 + 10,)[11, + L +( 201 ]91) LL(L]“{" L) ( )

Substituting in our experimental currents, the average experimental value of Ar. and

our theoretical parameters, and computing the resultant resonance frequencies, we find

fre = 21.2Hy, (4.35)
fr, = 2091z, (4.36)
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fr. = 17.8Hz, (4.37)
fo, = 13.8Hz, (4.38)
fo, = 13.9Hz, (4.39)
fo, = 14.5Hz. (4.40)

The theoretical linear resonance frequencies match the experimental resonance
frequencies quite closely. The theoretical angular resonance frequencies, however, are all
approximately 10% below the corresponding experimental values This implies that we
have underestimated the angular spring constant by 20%. This is significant, but the
angular spring constants are much more dependent on the nonlinear inductance model
parameters, as can be seen from Eqs. (4.32) through (4.34). These parameters should
be more dependent on subtle effects that we have neglected in our inductance modeling,.
The relative scaling between each group matches quite well with the experimental values,
and confirms that our basic understanding of the dynamics of the SSA is correct. It is
also worth pointing out that without the nonlinear inductance coefficients, 3 and v, we
would be unable to understand the mode structure of the SSA.

Thus far we have neglected the contributions that the sensing currents make
to the resonance frequencies of the SSA., We will see in the next section that this is an

excellent approximation.

4.3 Calibration and Noise Measurement

In this cection, we characterize the circuitry used to drive the six sensing circuits
in the SSA, examine the calibration oi the SSA, calculate the energy coupling coefficients,

and compare the expected sensitivity of the SSA with the experimental results.

4.3.1 Sensing Drive Circuitry

Each of the sensing circuits in the SSA is driven by a low noise current-to-
voltage converter connected to an rf isolation transformer. This drive circuitry is shown
in Fig. 4.2. A pair of pi filters are placed in line between the current-to-voltage converter
and the rf isolation transformer. The combined lead and filter resistance in each leg
of the circuit is Ry = 2.0 {2 and the pair of pi filters are modeled as two capacitors,

'y = 0.185 uF, and two inductors, Ly = 0.17 mH. The outputs from the two pi filters
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Figure 4.2. The rf isolation transformer and circuitry used to drive each
of the sensing circuits in the SSA.

connect to a tank capacitance C placed in parallel with the isolation transformer. The rf
isolation transformer is wound on a hollow aluminum fixture and consists of a primary
and secondary coil of inductance Ly and Lj, respectively. The mutual inductance of the
isolation transformer is M;5. A thin brass sheet separates the primary and secondary
windings, and the eddy current losses in this isolation layer are represented by a resistance
R, which is placed between the tank capacitor and the primary of the transformer.

The experimental parameters for each of the sensing circuits are shown in Table
4.3. The capacitances listed are the nominal values, as measured at room temperature.

It is straightforward to show that the current Iy in the primary of the rf isolation

transformer induces a current [ in the secondary of the transforu..r, of magnitude
My,
L =-—12 1. (4.11)
Ly + Ls
The effective input inductance of the isolation transforiner can also be com-
puted:
Li(La+ Ls)— My,
L+ Ls
This effective inductance will resonate with the combined capacitance, C + Cyoat a

(4.42)

Leys =

frequency | 1
f= — (1.43)

m \/7-:-[/((’+ ('/)‘




Circuit Ly L, My, C IZ:'n| fe.rp

Tz 3.75mH 0.17mH 0.53mH 10puF 82 1.00kHz
Ty 354mH 0.19mH 0.51 mH 2uF 959 2.12kHz
T, 354mH 020mH 0.50mH 13uxuF 109Q 2.47kHz
8, 351mH 0.17mH 051mH 45uF 52Q 0.50kHz
6y 357mH 0.19mH 0.51 mH 5uF  90Q 1.41kHz
0, 354mH 0.20mH 0.53 mH JuF  88Q 1.84kHz

Table 4.3. Parameters for rf isolation circuits in the SSA.

It can also be shown that the transfer function between the input current intc
the rf isolation circuit, I, and the current passing through the primary of the isolation

transformer, Iy, is

I 1
- = , 4.44
1 1—w:"Le!/(C'FCf)'*'Riw(C'*‘C}') ( )

where we have neglected the contribution from the first filter capacitor, Cy. The first
filter capacitor will only play a significant role in the drive circuit when the frequency
of interest is greater than 10 kHz, and al! of our sensing circuits operate at frequencies

below 2.5 kHz. At resonance, this reduces to

Lo L [ L (4.45)

T=TR\Cr

Combining this with Eq. (4.41), we find that the magnitude of the transfer

function relating the drive current, I, to the sensing current, I, is

I 1 Lesy M,
2= = . 1.46)
IRV C+C L+ Ls (4.46)

It is clear from this expression that the transformer damping resistance is crucial in
controlling the drive circuitry gain. We expect this resistance to increase as a function of
frequency, and this will correspondingly reduce the gain in the rf isolation transformer
as the frequency of the tank circuit resonance increases. This is a rather rough model of

a very complicated distributed network. Given the sensitivity of the overall gain to the
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damping resistance, we should not expect our theoretical results to agree precisely with
the experimental results.

The damping resistance, R, can be computed by measuring the magnitude of
the circuit input impedence, Z;,. Using straightforward circuit analysis, it can be shown
that the input impedance of the complete rf isolation circuit is

R+ iwleyg
1wl sg(C +Cy) + Riw(C + Cy)’

Zin=2Rs +2iwLly + (1.47)

where we have once again neglected the contribution from the first filter capacitor. At

resonance, this impedance reduces to

Less . Lesy =20y
Zin = 2R, + —i . (4.48)
d R(C+C1) Lej/(C+C'f)

Solving for R, we find

R = Less | (4.19)
(C + Cy) [\ [1Zun)? = Lerd=2E0 9 p
f ‘in Le]/(C+C1) f

Substituting the experimental parameters from Table 4.3 into our expressions
for R, L.s; (Eq. (1.42)), resonance frequency (Eq. (4.43)), and drive current transfer
function (Eq. (4.46)), we find the theoretical parameters a: .sied in Table 4.4. The the-
oretical values for the resonance frequencies are all slightly .rger than the corresponding
experimental values. This is not too surprising, considering that the capacitance value
is measured at room temperature, whereas the resonance is measured with the circuit at

4.2 K.

4.3.2 Residual Misbalance

Each of the sensing circuits in the SSA is balanced by adjusting the levitation
current in the six levitation circuits which surround the proof mass. As described at
the beginning of this chapter, this process proceeds in an iterative manner until, after
several cycles, we are limited by the resolution of the current supply and a small residual
misbalance exists in each of the sensing circuits.

The in-phase component of this misbalance is due to a slight error in the proof
mass position, and is inductive in nature. In practice, this component of the misbalance

is removed by sending a small DC current into each of the feedback transformers and




Circuit Legy Stheory R Transfer Function

r. 21lmH 1.09kHz 25Q I /I=175
Ty 2.18mH 2.31kHz 11Q L, /I=16
T, 230mH 2.72kHz 15Q I.,/I1 =66
8, 200mH 0.53kHz 1.04Q Iy, /T =19
0, 221 mH 1.49kHz 5Q Iy, /I =11
9, 215mH 1.92kHz 66Q [y /=85

Table 4.4. Theoretical parameters for rf isolation circuits in the SSA.

thereby adjusting the position of the proof mass until each sensing bridge in the SSA is
nulled.

The out-of-phase component of the misbalance is independent of proof mass
position, and is resistive in nature. To the extent that each sensing coil in the SSA is
identical and suffers the same resistive loss, this resistive portion should vanish. In fact,
each of the sensing coils is very well matched since each coil is formed from a single layer
of windings of equal turns. The levitation coils are a two layer winding, the fabrication
of which is much more difficult to control, and therefore these coils are less well matched.

In the current design, levitation and sensing coils rest side by side and are
weakly coupled together. Thus, the limit on how well the sensing coils match comes
from the levitation coils. We are currently attempting to understand this problem, and
hope to improve this in the new design of the SSA.

In order to quantitatively understand the impor.ance of the residual resistive
misbalance, it is interesting to consider the bridge circuit shown in Fig. 4.3. Three of the
inductances in the bridge are identical, and suffer dielectric and eddy current losses so
that they present an impedence iwlLg+ Rs. The fourth inductor is slightly different from
the other three, and presents an impedance iwls + Rs + 8Rs. Solving for the current

through th. SOUID input coil and the five other bridges. we find

, 6Rs I coswt .
1= — —— . (-1.50)
4 [Rs +w(6Ls + [/SQ)]

where we have expanded through first order in 6.
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Figure 4.3. A bridge circuit containing a small resistive component.

Measurements of the resistive component of the impedance of a single sensing

coil at three separate frequencies give

Rs(0.5kHz) = 19.5u0, (4.51)
Rs(1.0kHz) = 46.3 49, (1.52)

Rs(5.0 kHz) 171 pQ. (1.53)

Recalling that Lg = 1.8uH, we find, as must be the case, Rs <« wilg for the range of
carrier frequencies used. Applying this limit to Eq.(4.50), we find that the amplitude of
the flux signal through the SQUID loop is

_ MsglRRs s

= s .
dw(bLs + Lsg) Ks (1.54)

where Mgg = 2.0 x 10 B is the mutnal inductance between the SQUID input coil and
the SQUID loop.

The slew rate of the SQUID feedback controller determines the maximum signal
size, ®par, that the SQUID amplifier can handle. Thus, the maximum amplitude of the

current into the sensing bridge is

${6Ls + Ls )b
Ima.r = () s F SQ)“ {-1.55)

MsoRs(éRs/Ks)
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For the Quantum Design Model 2000 SQUID controller, the maximum signal
size is 8.0 x 10° @, up to about 60 Hz. Above this it drops off with frequency, reaching
1, at approximately 20 kHz. At 2.5 kHz, the maximum signal is approximately 20 ¢,.

Assuming a 5 % misbalance in Rg,
Iner = 0.34A. (4.56)

The actual limit on the drive current through the bridge driven at 2.5 kHz was found to
be close to this value. Note that at lower frequencies ®,,,, will be higher so I,,4, should
be higher. In fact, for the bridges driven at the lower frequencies, the current was limited
by a superconducting-to-normal transition, probably caused by eddy current heating in

the isolation transformer

4.3.3 Linear Acceleration

The three linear acceleration circuits are calibrated by driving the shaker along
the vertical and comparing the signal from the vertically oriented room temperature
accelerometer to the signals from the SSA. The r;, ry, and r; circuits were driven with
currents of 13.25 mA, 0.75 mA, and 13.25 mA, respectivelv. Multiplying these currents

by the three corresponding gains (I, /1) listed in Table 4.4, we find

., = 232mA. (4.57)
I, = 57mA, (1.58)
I,, = 113mA. (4.59)

The r, levitation circuit was limited in drive current because the leads used to drive the r,
feedback transformer were damaged during the cool-down and no feedback current could
be sent to that circuit. This left a large misbalance signal which caused the SQUID to
unlock if a current with an amplitude larger than 0.75 mA was driven into the r, sensing
circuit.

The experimental sensitivities for rz, ry, and r. at these drive currents were

measiured to be
(Hai)yy = 3.1x 1070, /0. (1.60)
(Hap),y = 99x10°2,/g. (4.61)

(i, )y = 16:C10° D, /q. (4.62)
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The theoretical transfer functions for the three linear degrees ol freedom are,

from Egs. (2.195) through (2.197),

1, As 1
Hopidms = : 5 1.63
( z)rms VQqu+6stZ+Wrw/Qr—Wz {1.63)
I, As 1
]10 i = “ i . v".(‘ 1\
< Yy >rms ﬂ LSQ + 6LS wg + wrw/Qr — u"2 ( )t
[r J\s l N
Hq,i = N 2 165)
( x)rms \/—2_LSQ+6LSW3+WT“)/QT_“"2 ( 1D

These equations were derived for identical resonance frequencies and iaentical drive lev-
els. All three of our linear resonance frequencies differ slightly, so that w, must be
replaced by w,_, Wy, and wy, in each of the three equations. All three drive levels differ,
and I, must be similarly replaced by I,,, I; , and I;,. Making these substitutions and
taking the limit where w < w,, we find

1., Ag

Ho,i)ps = — {(4.66

ozt A4V2n2f? Lsq +6Ls )
I; As

Ha 1 = s , 1.67

(Hoyidem, 4212 f2 Lsq +6Ls 14.67)

(Hari)pms = L, As (4.68)

4V/2r2f2 Lsg +6Ls

Substituting the values of sensing currents and othe: parameters into these equations,

we find
(Hari)prmy = 3.5 107 ®0/g, (4.69)
(Hayi),,, = 88x10°%,/g. (4.70)
(Hapi)rms = 2-1% 10°®,/g. (1.71)

The first two of these theoretical sensitivites agree with the experimental values within
10%. This is a rather good agreement, given the crudeness with which we are able to
model the damping in the rf isolation transformer. The third value is 50% larger than
the experimental value.

A log-log plot showing the low-frequency noise spectra from 0.3 mHz to 0.3
Hz for the r, and r, sensing circuits is shown in Fig. 4..4. Above 0.1 Hz, the spectrum
is dominated by the background seismic noise of the laboratory. Below 0.1 Hz, the
spectrum appears to be dominated by 1/f tvpe noise. The broad peak around 0.2 Hz

corresponds to the peak in the seismic noise of the earth reported by seismologists {1,2],
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as is shown in Fig. 4.5. The peak is attributed to the periodic pounding of the shores
by ocean waves. Its amplitude is stronglv dependent on a number of factors, including
the distance to the shore and the ampiitude of the ocean waves, so it is not suprising
that the agreement between the peak heights on the two figures is not better. Note that
the seismic noise drops by over two orders of magnitude below this peak. The fact that
the SSA’s signal does not reach a lower minimum is an indication that the spectrum is

dominated by instrument noise below 0.1 Hz.

The source of the low frequency noise has not been identified. It could be due
to a slow tilt of the accelerometer platform brought about by mechanical creep in the
suspension. Such a tilt would modulate the earth’s gravity. Low frequency drifts in the
oscillator amplitude or the temperature may also be sources of 1/f noisc. Additionally,
flux creep can cause drifts in superconducting levitation circuits which induce 1/f noise
in the outputs [9]. As mentioned previously, Nb-Ti wire was used in the present design
of the SSA in order to overcome the reliabilty problems encountered with the niobium
wire available at the time. It is well known that flux creep may be significant in type-
I superconductors such as Nb-Ti. Future work must concentrate on determining and

reducing low frequency noise.

Energy Coupling and Fundamental Instrument Noise

The fundamental instrument noise in the three linear degrees of freedom in
the SSA is described by Lqs. (2.229) through (2.232). In deriving these equations, we
assumed that all three linear modes w. .- i¢-1tical and did not take into account varia-
tions in the resonance frequencies. wy, tii. _.iality factors, Q,, and the energy coupling
coefficients, 3,. Replacing 8, by B,,, Br,, and §,,, and Q, by Q;,, Q.,, and @Q.,, and

substituting wr_, w, , and w,, in place of the generic w,, we find

4wy, (kT w,_ FEg
P, = z < 4+ —= ). 4.72)
m QT: ﬂrx (
4w, [ kgT w, Es
P, = ¥ + -2 . 4.73
v S T (Q,, B, ) 13
wr, [/ re Es
P, _ i_i kET o ‘-‘-{LES\ (4_74)

T kar,' B, /-




where 8, , B,;,, and f,, are, {rom Eq. (2.228),

. 1 As Lso
r = 3 1.7
ﬂ’ 2 <L5Q76Ls) mwf ( ‘5)
/
i Lsq
. = = £.76
ﬂ” 2(L5Q+6Ls) mw? (4.76)
1 I, As Lso
L= = z (4771
Br. 2 <L5Q+6Ls) mw? ¢ )

Substituting the sensing currents along with other parameiers into tnese equa-

tions, we find

B.. = 33x107°, (4.78)
Br, = 2.0x107°, (1.79)
By, = 1L1x1078 (1.80)

These couplings are extremely small and explain why we did not have to consider the
contribution of the sensing current to the linear resonaice frequencies in the previons
section. These small couplings severely limit the sensitivity of the accelerometer. In the
new desigr, these coupling coefficients should be larger, and the SSA should approach
its potential sensitivity.

The white noise level normally observed from the Quantum Design RF SQUIDs
is 107 ®,/vHz, which is equivalent to a power spectral density of Es = 10~28J/Hx.
Substituting this, the experimental parameters, and the values for the energy coupling

coeflicients into expressions for the power spectral density, Eqs. (1.72) through (4.74).

we find
PN = 40 x 107"/ Viz, (4.81)
1"/2 = 1.6 x 10-3g/VHz. (1.82)
PI? = 59x 107 /VHz. (4.83)

At frequencies above approximately 40 Hz, the signal due to seismic noise drops below
the white noise level of the SQUID amplifier, <o this level can be observed directly.
Dividing by the measured sensitivities, Eqs. (4.60) through (4.62), we obtain

P2 = 32x107%/VHz, (1.84)




P2 = 1.0x 10" %/VHz, (4.85)
ay
P2 = 6.4 x107"%/V1lz. (1.86)

These are in reasonable agreement with the theoretical noise limits.

4.3.4 Angular Acceleration

The three angular acceleration circuits are calibrated by driving the shaker
about ihe vertical axis and comparing the three angular signals froin the SSA to the rms
amplitude of the angular motion.

The 6., 6,, and 8, circuits were driven with currents of 25.5, 13.3 mA, and 13.0
mA, respectively. Multiplying these currents by the three corresponding gains in Table

4.3, we find

I;, = 484mA, (4.87)
I, = 146mA, (4.88)
I, = 110mA. (4.89)

z

The experimental sensitivities for 8., 6,, and 8, at these drive currents were

measured to be

(Hopi)ymy, = 2.1x10%®,/rad/sec?, (4.90)
(Hayi). . = 6.0x 107 ®,/rad/sec’, (4.91)
(Ho)pm, = 4.7x10%,/rad/sec’. (4.92)

The theoretical transfer functions for the three angular degrees of freedom are,

from Egs. (2.198) through (2.200),

Iy cAs 1

- I | , 4.93
< x)rms \/§L50+6stg+lw9‘*’/@9_“’2 ( )
Iy cAs 1
moy o do . , 1.94
( ¥ >'rms ﬂLSQ-{»GLSwg‘{-lWQW/QB-w’Z ( )
A
(Hazi>rms = ]9 s : (495)

7§L5Q +6Ls wg + iwgw/Qe —w?
Since actual angular resonance frequencies differ slightly, wg must be replaced by wyg,,

wp,, and wy, in each of the three equations. Likewise, Iy must be replaced by /Iq,, /o, .
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and I;, . Making these substitution and taking the limit where w < wy, we find

I C.’\_g
Hai) = -2 , 4.96
(Horidous 4y/2n2 f} Lsq +6Ls (4.96)
Iy cAs
H,.; = y —_ 1.97
(Hoyidoms 4\/5””3, Lsg +6Ls (497)
I A
(HCX;‘)rms = 8‘ s M (198)

/2272 Lsq + 6Ls

Substituting the values of sensing currents and other parameters into these equations,

we find

(Hayidyms = 2.1X 10® &, /rad /sec?, (1.99)
(Hoyi),,, = 62X 102 &, /rad /scc?, (4.100)
(Hayi)ymy = 4.1x 10* ®,/rad/sec’. (1.101)

These values are in good agreement with the experimental sensitivities.

The low-frequency spectra of seismic noise, as measured by the 6, 6,, and 6.
sensing circuits, are shown in Fig. 4.6. The figure shows the fundamental and harmonics
of the angular calibration signal at 0.4 Hz. The four other peaks are due to modes of
the suspension, such as the pendium mode at 0.36 Hz and the vertical spring mode at

1.5 Hz.

Energy Coupling and Fundamental Instrument Noise

The fundamental instrument noise in the three angular degrees of freedom in
the SSA is des-ribed by Eq. (2.233). In deriving this equation, we assuimed that all three
angular modes were identical and did not take into account variations in the resonance
frequencies, wg, and the energy coupling coefficients, 3. Replacing 34 by 35, . ;3,;!/, and

Be,, and substituting wy_, wy,, and wy, in place of the generic wy, we find

4wy (kHT we E5>
P, = = + —Z , (1.102)
I \Qs, 3o, \
dwo, [ kgT  ws, Es
P, = Y s . 4.10:
= e (110
A’lwg (kBT g ES)
P, = —3=—+—="=). 4.104
, (ot (4.104)
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Figure 4.6. The low-frequency spectra of scismic noisc as measured by
the 8., 8,, and 8, sensing circuits.
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where fBy_, By, , and Jy, are, from Eq. (2.234),

2
1 IncAs \ Lsg ]
= o= , 110
Pe. 2 (L5Q+6L5> Ing ( )
2
1 loehs ' isg |
= , 1.106
Pou = 3 (LSQ ¥6Ls) 1o} (41061
2
1 19 CAS LsQ -
= Q. 110
Por = 3 ([,5Q+6L5> ) (.10

Substituting the experimental values of the sensing currents along with oiher

parameters into these equations, we find

Be, = 2.0x1073, (4.108)
Bo, = 1.8x107°, (4.109)
Be, = 87x1077. (4.110)

These couplings are extremely small and explain why we did not have to consider the
contribution of the sensing currents to the angular resonance frequencies in the previous
section. These small couplings severely limit the angular acceleration sensitivity of the
present model of the 33A, as in the case of the linear accelerations. The couplings of the
new design should be much larger, and the SSA should approach its potential sensitivity.

Substituting Es = 1072 J/Hz for the Quantum Design RF SQUIDs. the exper-
imental parameters, and the values for the energy coupling coefficients into expressions

for the power spectral density, Eqs. (4.102) through (4.104), we find

PM? = 6.7 x 107%rad/sec’/ Vi, (4.111)
PO’,!{Z = 2.2x 107 "rad/sec?/V iz, (4.112)
P;xﬁ = 3.5x 10" "rad/sec?/VHz. (1.113)

Again, the white noise level of the SQUID amplifier can be observed directly at frequen-
cies above 40 Hz. Dividing this noise level by the measured sensitivities, Fqs. (1.00)

through (4.92), we find

PP = 48 % 107 %rad/soct VL (+114)
]’;!{2 = 1.7x 10" "rad/sec?/VHz, (1.115)
1)(:‘/2 = 2.1x 10_7rad/soc2/\/ﬂ'7-‘. (1.116)

These are in reasonable agreement with the theoretical noise limits.




4.4 Future Improvements

The present design of the SSA works, and the measurements of its parameters
agree quite well with theory. Analysis of the experimental results points out several areas
in which improvement can be made: 1) The minimum detectable signal can potentiallv
be increased several orders of magnitude by increasing the electro-mechanical coupling,
3. 2) The sources of the 1/ f noise must be determined and reduced. 3) The device must
be operated in the closed-loop mode to increase the maximum detectable acceleration
signal and reduce nonlinearity.

The electro-mechanical coupling can be most casily increased by raising the
bridge drive current, /.. However, the mishalance in the resistive component of the
bridge circuit imposes a limit on the current, as discussed in Section 4.3.2. In order to
achieve better matching between the coils, it is necessary to use single layer coils for
both levitaticn and sensing. However, this reduces the inductance of the levitation coils
and so increases the current required for levitation. One way to avoid approaching the
critical current of the wire is to use a single large coil on each active face of the coll
form in place of the seperate sensing and levitation coils. This configuration requires
the sensing/levitation circuit for each axis to have a separate SQUID, but it has the
advantage that the single coils are much easier to fabricate. Furthermore, the single
coil will have a much larger value of A\g: approximately 5.7 times the present value. It
is expected that with these improvements, a bridge drive current in excess of I Amp
will be attained. Assuming the resonance frequency is kept the same as that of the
present model, 3 should be approximately 10? time larger than current values, implying
a minimum detectable signal 103 times lower.

As discussed briefly in Section 4.3.3, ¢ e likely source of 1/ f noise is flux creep
in Nb-Ti. Flux creep should be greatly reduced by using Nb in all the superconducting
circuits. Switching back to Nb at this point is reasonable because of a better understand-
ing of how the processing of the Nb wire affects its mechanical properties. In addition,
using only a single set of coils for both levitation and sensing simplifies the overall design.

Like most conventional accelerometers, the SSA should operate best in a feed-
back loop: The six demodulated outputs are fed into a controtler which applies current
to the six levitation circuits to maintain the balance of the bridges. In this way, the

offective bandwidth of the device can be pushed to several times the natural resonance
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frequency. The controller also provides damping. Because the oper loop system is lightly
dumped, a large acceleration impulse or strong acceleration noise often causes a signal
at the resonance frequency large enough to excee ! the slew rate of the SQUID ampli-
fier. By providing damping, the maximum readable signal is increased. In the present
circuit, all the sensing bridges are directly connected, so the spacing between the carrior
frequencies limits the bandwidth allotted to each axis, and thus the ltimate effective
bandwidth attainable using a controller. By using separate SQVUIDs for each axis. the
ultimate bandwidth of the accelerometer skould be limited by the carrier frequency if
coupling between the circuits through stray inductances can be made negligible.

A new version of the accelerometer has been designed incorporating the above
changes. The Model 11 SSA will have only 21 coils connected in six independent bridge
circuits that will provide both levitation and sensing. Fach bridge will have its own
SQUID amplifier. A simple PID (rroportional, integral, differential) controller has re-
cently been built and tested on the present version of the SSA. Using the results of these
tests, an improved controller will be built for the Madel 11 SSA. With these improve-
ments, substantial improvement in sensitivity, especially in the crucial low frequency

region, should be attained.
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